# HOW TO SOLVE QUANTITATIVE APTITUDE PROBLEMS FASTER

The techniques and methods we apply to solve  problems in quantitative aptitude will vary from problem to problem.

The techniques and methods we apply to solve a particular problems in a particular topic of quantitative aptitude will not work for another problem found in some other topic.

For example, the methods we apply to solve the word problems in equations will not work for the word problems in mensuration.

Because, in equations, we will solve most of the problems without any diagram. But, in mensuration, for each word problem, we have to draw a diagram. Without diagram, always it is bit difficult to solve word problems in mensuration.

Even though we have different techniques to solve quantitative aptitude problems in different topics, let us see the steps which are most commonly involved in "How to solve quantitative aptitude problems faster"

## Solving Quantitative Aptitude Problems - Steps

Step 1 :

Understanding the question is more important than any other thing. That is, always it is very important to understand the information given in the question rather than solving.

Step 2 :

If it is possible, we have to split the given information. Because, when we split the given information in to parts, we can understand them easily.

Step 3 :

Once we understand the given information clearly, solving the word problem would not be a challenging work.

Step 4 :

When we try to solve the word problems, we have to introduce "x" or "y" or some other alphabet for unknown value (=answer for our question). Finally we have to get value for the alphabet which was introduced for the unknown value.

Step 5 :

If it is required, we have to draw picture for the given information. Drawing picture for the given information will give us a clear understanding about the question.

Step 6 :

Using the alphabet introduced for unknown value, we have to translate the English statement (information) given in the question as mathematical equation.

In translation, we have to translate  the following English words as the corresponding mathematical symbols.

of -------> x (multiplication)

am, is, are, was, were, will be, would be --------> = (equal)

Step 7 :

Once we have translated the English Statement (information) given in the question as mathematical equation correctly, 90% of the work will be over. The remaining 10% is just getting the answer. That is solving for the unknown.

These are the steps most commonly involved in solving word problems in mathematics.

## Solving Quantitative Aptitude Problems - Example

Question :

The age of a man is three times  the sum of the ages of his two sons and 5 years hence his age will be double the sum of their ages. Find the present age of the man.

Step 1 :

Let us understand the given information. There are two information given in the question.

1. The age of a man is three times the sum of the ages of his two sons. (At present)

2. After 5 years, his age would be double the sum of their ages. (After 5 years)

Step 2 :

Target of the question :

Present age of the man  =  ?

Step 3 :

Introduce required variables for the information given in the question.

Let x be the present age of the man.

Let y be the sum of present ages of two sons.

Clearly, the value of x to be found.

Because that is the target of the question.

Step 4 :

Translate the given information as mathematical equation using x and y.

First information :

The age of a man is three times the sum of the ages of his two sons.

Translation :

The Age of a man ----->  x

is ----->  =

Three times sum of the ages of his two sons ----->  3y

Equation related to the first information using x and y is

x  =  3y -----(1)

Second Information :

After 5 years, his age would be double the sum of their ages.

Translation :

Age of the man after 5 years -----> (x + 5)

Sum of the ages of his two sons after 5 years is

y + 5 + 5  =  y + 10

(Because there are two sons, 5 is added twice)

Double the sum of ages of two sons -----> 2(y + 10)

would be ----->  =

Equations related to the second information using x and y is

x + 5  =  2(y + 10) -----(2)

Step 5 :

Solve equations (1) & (2).

From (1), substitute 3y for x in (2).

3y + 5  =  2(y + 10)

3y + 5  =  2y + 20

y  =  15

Substitute 15 for y in (1).

x  =  3(15)

x  =  45

So, the present age of the man is 45 years.

## Quantitative Aptitude - Topics

1. Problems on Numbers

2. HCF and LCM Problems

3. HCF and LCM Word Problems

4. LCM and HCF Calculator

5. Problems on Trains

6. Time and Work problems

7. Time and Distance Problems

8. Problems on Ages

9. Problems on Average

10. Problems on Boats and Streams

11. Problems on Ratio and Proportion

12. Allegation and mixture

13. Percentage word problems

14. Profit and Loss Shortcuts

15. Problems on Partnership

16. Simple Interest Problems

17. Compound Interest Problems

18. Permutation and Combination Problems

19. Calendar Problems

20. Formulas for shapes

21. Mensuration

22. Clock Problems

23. Word Problems on Simple Equations

24. Word Problems on Simultaneous Equations

26. Word Problems on Quadratic equations

27. Pipes and Cisterns Shortcuts

28. Surds and Indices

29. Logarithm Concepts and Problems

30. Modular Arithmetic Apart from the stuff given above if you need any other stuff in math, please use our google custom search here.

Kindly mail your feedback to v4formath@gmail.com

WORD PROBLEMS

Word problems on linear equations

Algebra word problems

Word problems on trains

Area and perimeter word problems

Word problems on direct variation and inverse variation

Word problems on unit price

Word problems on unit rate

Word problems on comparing rates

Converting customary units word problems

Converting metric units word problems

Word problems on simple interest

Word problems on compound interest

Word problems on types of angles

Complementary and supplementary angles word problems

Double facts word problems

Trigonometry word problems

Percentage word problems

Profit and loss word problems

Markup and markdown word problems

Decimal word problems

Word problems on fractions

One step equation word problems

Linear inequalities word problems

Ratio and proportion word problems

Time and work word problems

Word problems on sets and Venn diagrams

Word problems on ages

Pythagorean theorem word problems

Percent of a number word problems

Word problems on constant speed

Word problems on average speed

Word problems on sum of the angles of a triangle is 180 degree

OTHER TOPICS

Profit and loss shortcuts

Percentage shortcuts

Times table shortcuts

Time, speed and distance shortcuts

Ratio and proportion shortcuts

Domain and range of rational functions

Domain and range of rational functions with holes

Graphing rational functions

Graphing rational functions with holes

Converting repeating decimals in to fractions

Decimal representation of rational numbers

Finding square root using long division

L.C.M method to solve time and work problems

Translating the word problems in to algebraic expressions

Remainder when 2 power 256 is divided by 17

Remainder when 17 power 23 is divided by 16

Sum of all three digit numbers divisible by 6

Sum of all three digit numbers divisible by 7

Sum of all three digit numbers divisible by 8

Sum of all three digit numbers formed using 1, 3, 4

Sum of all three four digit numbers formed with non zero digits

Sum of all three four digit numbers formed using 0, 1, 2, 3

Sum of all three four digit numbers formed using 1, 2, 5, 6

## Recent Articles 1. ### Exponential vs Linear Growth Worksheet

May 23, 22 01:59 AM

Exponential vs Linear Growth Worksheet

2. ### Linear vs Exponential Growth

May 23, 22 01:59 AM

Linear vs Exponential Growth - Concept - Examples