When we divide two integers, say 'X' and 'Y', we will have an equation that looks like the following :
X/Y = Q remainder R
Here,
X is the dividend
Y is the divisor
Q is the quotient
R is the remainder
Sometimes, we would be interested to know only the remainder when X is divided by Y.
For such cases, the operator called modulo (abbreviated as mod) will be used.
Using the same X, Y, Q and R as above, we can have
X mod Y = R
We say this as X modulo Y is equal to R, where Y is referred to as the modulus.
For example,
18/7 = 2 remainder 4
18 mod 7 = 4
Observe what happens when a number is increased by one and divided by 4.
0/4 = 0 remainder 0
1/4 = 0 remainder 1
2/4 = 0 remainder 2
3/4 = 0 remainder 3
4/4 = 1 remainder 0
5/4 = 1 remainder 1
6/4 = 1 remainder 2
7/4 = 1 remainder 3
8/4 = 2 remainder 0
The remainder starts at 0 and it increases by 1 each time, until the number reaches one less than the number we are dividing by. After that, the sequence repeats.
Observing this, we can visualize the operator modulo using circles.
We write 0 at the top of the circle and continue clockwise writing integers 1, 2,........ up to one less than the modulus.
For example a clock with the 12 replaced by a 0 would be the circle for a modulus of 12.
To find the result of X mod Y, we can do the following steps.
Step 1 :
Construct this clock for size Y.
Step 2 :
Start at 0 and move around the clock X steps.
Step 3 :
Wherever we land is our solution.
(If the number is positive, we step clockwise, if it's negative, we step counter-clockwise.)
Example 1 :
Compute :
8 mod 4
Solution :
8 is greater than 4.
When 8 is divided by 4, the remainder is 0.
8/4 = (2x4) + 0
So,
8 mod 4 = 0
Example 2 :
Compute :
14 mod 3
Solution :
14 is greater than 3.
When 14 is divided by 3, the remainder is 2.
14/3 = (4x3) + 2
So,
14 mod 3 = 2
Example 3 :
Compute :
3 mod 7
Solution :
3 is less than 7.
3/7 = (0x7) + 3
So,
3 mod 7 = 3
Example 4 :
Compute :
-5 mod 2
Solution :
Here, the dividend is -5 (negative number) and 5 is not divisible by the divisor 2. Now, we have to find the number which comes after 5 that is evenly divisible by the divisor 2. That is 6.
So, we have to write -5 in terms -6.
-5 = -6 + 1
Therefore,
-5 mod 2 = 1
Example 5 :
Compute :
-4 mod 2
Solution :
Here, the dividend is -4 (negative number) and 4 is evenly divisible by the divisor 2.
So,
-4 mod 2 = 0
Example 6 :
Compute :
-11 mod 5
Solution :
Here, the dividend is -11 (negative number) and 11 is not divisible by the divisor 5. Now, we have to find the number which comes after 11 that is evenly divisible by the divisor 5. That is 15.
So, we have to write -11 in terms -15.
-11 = -15 + 4
Therefore,
-11 mod 5 = 4
Example 7 :
Compute :
-12 mod 4
Solution :
Here, the dividend is -12 (negative number) and 12 is evenly divisible by the divisor 4.
So,
-12 mod 4 = 0
Example 8 :
Compute :
-3 mod 5
Solution :
Here, the dividend is -3 (negative number) and 3 is less than the divisor 5. Now, we have to find the number which comes after 3 that is evenly divisible by the divisor 5. That is 5.
So, we have to write -3 in terms -5.
-3 = -5 + 2
Therefore,
-3 mod 5 = 2
Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.
If you have any feedback about our math content, please mail us :
v4formath@gmail.com
We always appreciate your feedback.
You can also visit the following web pages on different stuff in math.
WORD PROBLEMS
Word problems on simple equations
Word problems on linear equations
Word problems on quadratic equations
Area and perimeter word problems
Word problems on direct variation and inverse variation
Word problems on comparing rates
Converting customary units word problems
Converting metric units word problems
Word problems on simple interest
Word problems on compound interest
Word problems on types of angles
Complementary and supplementary angles word problems
Trigonometry word problems
Markup and markdown word problems
Word problems on mixed fractrions
One step equation word problems
Linear inequalities word problems
Ratio and proportion word problems
Word problems on sets and venn diagrams
Pythagorean theorem word problems
Percent of a number word problems
Word problems on constant speed
Word problems on average speed
Word problems on sum of the angles of a triangle is 180 degree
OTHER TOPICS
Time, speed and distance shortcuts
Ratio and proportion shortcuts
Domain and range of rational functions
Domain and range of rational functions with holes
Graphing rational functions with holes
Converting repeating decimals in to fractions
Decimal representation of rational numbers
Finding square root using long division
L.C.M method to solve time and work problems
Translating the word problems in to algebraic expressions
Remainder when 2 power 256 is divided by 17
Remainder when 17 power 23 is divided by 16
Sum of all three digit numbers divisible by 6
Sum of all three digit numbers divisible by 7
Sum of all three digit numbers divisible by 8
Sum of all three digit numbers formed using 1, 3, 4
Sum of all three four digit numbers formed with non zero digits