# BODMAS RULE

The rule or order that we use to simplify numerical expressions in math is called BODMAS rule.

Very simply way to remember BODMAS rule!

----> Brackets

----> Of (orders :Powers and radicals)

D ----> Division

----> Multiplication

----> Subtraction Important Notes :

1. In a particular simplification, if you have both multiplication and division, do the operations one by one in the order from left to right.

2. Division does not always come before multiplication. We have to do one by one in the order from left to right.

3. In a particular simplification, if you have both addition and subtraction, do the operations one by one in the order from left to right.

Examples :

12 ÷ 3 x 5 = 4 x 5 = 20

13 - 5 + 9 = 8 + 9 = 17

In the above simplification, we have both division and multiplication. From left to right, we have division first and multiplication next. So we do division first and multiplication next.

Note :

Inside the brackets, if there are two or more operations, follow BODMAS Rule inside the brackets.

Problem 1 :

Evaluate :

5 + 3 x 12

Solution :

= 5 +﻿ ﻿3 x 12﻿ ----> Multiplication

Problem 2 :

Evaluate :

24 ÷ 6 + 72

Solution :

= 24 ÷ 6 + 7----> Exponent

24 ÷ 6 + 49 ----> Division

= 4 + 49 ----> Addition

Problem 3 :

Evaluate :

3 x (27 - 16)

Solution :

= 3 x (27 - 16) ----> Brackets

= 3 x 11 ----> Multiplication

Problem 4 :

Evaluate :

25 - 4 x (7 + 5) ÷ 4 + 3

Solution :

= 25 - 4 x (7 + 5) ÷ 4 + 3 ----> Brackets

= 25 - 4 x 12 ÷ 4 + 3 ----> Multiplication

= 25 - 48 ÷ 4 + 3 ----> Division

25 - 12 + 3 ----> Subtraction

= 13 + 3 ----> Addition

Problem 5 :

Evaluate :

64 - 3(13 + 2 x 12 ÷ 8 - 3 x 3) + 11

Solution :

= 64 - 3(13 + 2 x 12 ÷ 8 - 3 x 3) + 11 ----> Brackets

= 64 - 3(13 + 2 x 12 ÷ 8 - 3 x 3) + 11 ----> Multiplication

= 64 - 3(13 + 24 ÷ 8 - 3 x 3) + 11 ----> Division

= 64 - 3(13 + 3 - 3 x 3) + 11 ----> Multiplication

= 64 - 3(13 +  3 - 9) + 11 ----> Addition

= 64 - 3(16 - 9) + 11 ----> Brackets

= 64 - 3(7) + 11 ----> Multiplication

= 64 - 21 + 10 ----> Subtraction

= 43 + 10 ----> Addition

Problem 6 :

Evaluate :

[(45 - 3) ÷ (32 + 5)] x 2 - 5

Solution :

[(45 - 3) ÷ (3+ 5)] x 2 - 5 ----> Square Brackets

[(45 - 3) ÷ (3+ 5)] x 2 - 5 ----> Brackets

[42 ÷ (3+ 5)] x 2 - 5 ----> Brackets

[42 ÷ (3+ 5)] x 2 - 5 ----> Exponent

[42 ÷ (9 + 5)] x 2 - 5 ----> Brackets

= [42 ÷ 14] x 2 - 5 ----> Square Brackets

= 3 x 2 - 5 ----> Multiplication

= 6 - 5 ----> Subtraction

Problem 7 :

Evaluate :

(2 x 33 ÷ 9) - 2 x (6 + 8) ÷ 7

Solution :

= (2 x 33 ÷ 9) - 2 x ﻿(6 + 8)﻿ ÷ 7 ----> Brackets

= (2 x 33 ÷ 9) - 2 x ﻿(6 + 8)﻿ ÷ 7 ----> Exponent

= (2 x 27 ÷ 9) - 2 x ﻿(6 + 8)﻿ ÷ 7 ----> Multiplication

= (54 ÷ 9) - 2 x ﻿(6 + 8)﻿ ÷ 7 ----> Brackets

= 6 - 2 x ﻿(6 + 8)﻿ ÷ 7 ----> Brackets

= 6 - 2 x 14﻿ ÷ 7 ----> Multiplication

= 6 - 28﻿ ÷ 7 ----> Multiplication

= 6 - 4 ----> Multiplication

Problem 8 :

Evaluate :

(120 - 12) ÷ (36 ÷ 3) - 22 + 7

Solution :

= (120 - 12) ÷ (36 ÷ 3) - 22 + 7 ----> Brackets

= 108 ÷ (36 ÷ 3) - 22 + 7 ----> Brackets

= 108 ÷ 12 - 22 + 7 ----> Division

9 - 22 + 7 ----> Subtraction

= -13 + 7 ----> Subtraction

Problem 9 :

Evaluate :

5 x 12 ÷ 10 - (6 x 4) ÷ 12

Solution :

= 5 x 12 ÷ 10 - (6 x 4) ÷ 12 ----> Brackets

= 5 x 12 ÷ 10 - 24 ÷ 12 ----> Multiplication

= 60 ÷ 10 - 24 ÷ 12 ----> Division

= 6 - 24 ÷ 12 ----> Division

= 6 - 2 ----> Subtraction

Problem 10 :

Evaluate :

(29 - 13) x 3 ÷ (15 - 7) + 8

Solution :

= (29 - 13) x 3 ÷ (15 - 7) + 8 ----> Brackets

= 16 x 3 ÷ (15 - 7) + 8 ----> Brackets

= 16 x 3 ÷ 8 + 8 ----> Multiplication

= 48 ÷ 8 + 8 ----> Division

= 6 + 8 ----> Addition

Problem 11 :

Evaluate :

[96 ÷ (62 - 12) ÷ 4 - 3] x 2 + 13

Solution :

= ﻿[96 ÷ (62 - 12) ÷ 4 - 3]﻿ x 2 + 13 ----> Square Brackets

= ﻿[96 ÷ (62 - 12) ÷ 4 - 3]﻿ x 2 + 13 ----> Brackets

= ﻿[96 ÷ (62 - 12) ÷ 4 - 3]﻿ x 2 + 13 ----> Exponent

= ﻿[96 ÷ (36 - 12) ÷ 4 - 3]﻿ x 2 + 13 ----> Brackets

= ﻿[96 ÷ 24 ÷ 4 - 3]﻿ x 2 + 13 ----> Division

= ﻿[4 ÷ 4 - 3]﻿ x 2 + 13 ----> Division

= ﻿[1 - 3]﻿ x 2 + 13 ----> Square Brackets

= -2﻿ x 2 + 13 ----> Multiplication

= -4 + 13 ----> Subtraction

Problem 12 :

Evaluate :

(a2 + bc) + c3 ÷ (a2 + b) - c

if a = 3, b = -5 and c = 4.

Solution :

(a2 + bc) + c3 ÷ (a2 + b) - c

Substitute a = 3, b = -5 and c = 4.

[32 + (-5)4] + 43 ÷ [32 + (-5)] - 4

Evaluation :

[32 + (-5)4] + 43 ÷ [32 + (-5)] - 4 ----> Square Brackets

= [32 + (-5)4] + 43 ÷ [32 + (-5)] - 4 ----> Exponent

= [9 + (-5)4] + 43 ÷ [32 + (-5)] - 4 ----> Multiplication

[9 - 20] + 43 ÷ [32 + (-5)] - 4 ----> Square Brackets

= -11 + 43 ÷ [32 + (-5)] - 4 ----> Square Brackets

= -11 + 43 ÷ [32 + (-5)] - 4 ----> Exponent

= -11 + 43 ÷ [9 + (-5)] - 4 ----> Multiplication

= -11 + 43 ÷ [9 - 5] - 4 ----> Square Brackets

= -11 + 43 ÷ 4 - 4 ----> Exponent

= -11 + 64 ÷ 4 - 4 ----> Division

= -11 + 16 - 4 ----> Subtraction

= 5 - 4 ----> Subtraction

Problem 13 :

Evaluate : Solution : Problem 14 :

Evaluate : Solution : Problem 15 :

Evaluate : Solution : Problem 16 :

What is the value of if a = -2, b = 3 and c = 5.

Solution : Problem 17 :

What is the value of if a = 4, b = -3 and c = 7.

Solution : Problem 18 :

What is the value of if a = 3, b = -1 and c = -2.

Solution :  Kindly mail your feedback to v4formath@gmail.com

## Recent Articles 1. ### Descriptive Form of Set

Oct 03, 23 12:56 AM

Descriptive Form of Set - Concept - Examples

2. ### Descriptive Form of Set Worksheet

Oct 03, 23 12:34 AM

Descriptive Form of Set Worksheet