**Problem 1 :**

**Difference between a number and its positive square root is 12. Find the number. **

**Solution :**

Let 'x' be the required number.

Its positive square root is √x

**Given :** Difference between x and √x = 12

x - √x = 12

x - 12 = √x

(x - 12)^{2} = x

x^{2} - 24x + 144 = x

x^{2} - 25x + 144 = 0

(x - 9)(x - 16) = 0

x = 9 or x = 16

x = 9 does not satisfy the condition given in the question.

So, the required number is 16.

**Problem 2 :**

A piece of iron rod costs $60. If the rod was 2 meter shorter and each meter costs $1 more, the cost would remain unchanged. What is the length of the rod?

**Solution :**

Let 'x' be the length of the given rod.

Then the length of the rod 2 meter shorter is (x - 2) and the total cost of both the rods is $60 (Because cost would remain unchanged).

Cost of one meter of the given rod is

= 60 / x

Cost of one meter of the rod which is 2 meter shorter is

= 60 / (x - 2)

**Given : **If the rod was 2 meter shorter and each meter costs $1 more.

That is, 60/(x-2) is $1 more than 60/x.

[60 / (x - 2)] - [60 / x] = 1

Simplify.

[60x - 60(x - 2)] / [x(x - 2)] = 1

[60x - 60x + 120] / [x^{2} - 2x] = 1

120 / (x^{2} - 2x) = 1

120 = x^{2} - 2x

0 = x^{2} + 2x - 120

x^{2} + 2x - 120 = 0

(x + 10)(x - 12) = 0

x = - 10 or x = 12

Because length can not be a negative number, we can ignore "- 10".

So, the length of the given rod is 12 m.

**Problem 3 :**

Divide 25 in two parts so that sum of their reciprocals is 1/6.

**Solution :**

Let 'x' be one of the parts of 25. Then the other part is (25 - x). **Given : **Sum of the reciprocals of the parts is 1/6.

Then, we have

1/x + 1/(25 - x) = 1/6

Simplify.

(25 - x + x) / x(25 - x) = 1/6

25 / (25x - x^{2}) = 1/6

6(25) = 25x - x^{2}

150 = 25x - x^{2}

x^{2} - 25x + 150 = 0

(x - 15)(x - 10) = 0

x = 15 or x = 10

When x = 15,

25 - x = 25 - 15

25 - x = 10

When x = 10,

25 - x = 25 - 10

25 - x = 15

So, the two parts of the 25 are 10 and 15.

**Problem 4 :**

The hypotenuse of a right angled triangle is 20 cm. The difference between its other two sides is 4 cm. Find the length of the sides.

**Solution :**

Let 'x' and "x + 4" be the lengths of other two sides.

Using Pythagorean theorem, we have

(x + 4)x^{2} + x^{2} = 20x^{2}

Simplify.

x^{2} + 8x + 16 + x^{2} = 400

2x^{2} + 8x + 16 = 400

Subtract 400 from both sides.

2x^{2} + 8x - 384 = 0

Divide both sides by 2.

x^{2} + 4x - 192 = 0

(x + 16)(x - 12) = 0

x = -16 or x = 12

x = -16 can not be accepted. Because length can not be negative.

If x = 12,

x + 4 = 12 + 4 = 16

So, the other two sides of the triangle are 12 cm and 16 cm.

**Problem 5 :**

The sides of an equilateral triangle are shortened by 12 units, 13 units and 14 units respectively and a right angle triangle is formed. Find the length of each side of the equilateral triangle.

**Solution :**

Let 'x' be the length of each side of the equilateral triangle.

Then, the sides of the right angle triangle are

(x - 12), (x - 13) and (x - 14)

In the above three sides, the side represented by (x - 12) is hypotenuse (Because that is the longest side).

Using Pythagorean theorem, we have

(x - 12)^{2} = (x - 13)^{2} + (x - 14)^{2}

x^{2} - 24x + 144 = x^{2} - 26x + 169 + x^{2} - 28x + 196

x^{2} - 30x + 221 = 0

(x - 13)(x - 17) = 0

x = 13 or x = 17.

x = 13 can not be accepted.

Because, if x = 13, the side represented by (x - 14) will be negative.

So, the side of the equilateral triangle is 17 units.

Apart from the problems given above, if you need more word problems on quadratic equations

Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.

If you have any feedback about our math content, please mail us :

**v4formath@gmail.com**

We always appreciate your feedback.

You can also visit the following web pages on different stuff in math.

**WORD PROBLEMS**

**Word problems on simple equations **

**Word problems on linear equations **

**Word problems on quadratic equations**

**Area and perimeter word problems**

**Word problems on direct variation and inverse variation **

**Word problems on comparing rates**

**Converting customary units word problems **

**Converting metric units word problems**

**Word problems on simple interest**

**Word problems on compound interest**

**Word problems on types of angles **

**Complementary and supplementary angles word problems**

**Trigonometry word problems**

**Markup and markdown word problems **

**Word problems on mixed fractrions**

**One step equation word problems**

**Linear inequalities word problems**

**Ratio and proportion word problems**

**Word problems on sets and venn diagrams**

**Pythagorean theorem word problems**

**Percent of a number word problems**

**Word problems on constant speed**

**Word problems on average speed **

**Word problems on sum of the angles of a triangle is 180 degree**

**OTHER TOPICS **

**Time, speed and distance shortcuts**

**Ratio and proportion shortcuts**

**Domain and range of rational functions**

**Domain and range of rational functions with holes**

**Graphing rational functions with holes**

**Converting repeating decimals in to fractions**

**Decimal representation of rational numbers**

**Finding square root using long division**

**L.C.M method to solve time and work problems**

**Translating the word problems in to algebraic expressions**

**Remainder when 2 power 256 is divided by 17**

**Remainder when 17 power 23 is divided by 16**

**Sum of all three digit numbers divisible by 6**

**Sum of all three digit numbers divisible by 7**

**Sum of all three digit numbers divisible by 8**

**Sum of all three digit numbers formed using 1, 3, 4**

**Sum of all three four digit numbers formed with non zero digits**