Problem 1 :

Arrange the following digits so that they make smallest possible number.

8, 4, 5, 9, 7, 6, 1, 3, 2

(A) 142356789           (B) 132456789       (C) 123456789

Solution :

The smallest possible number that can be formed by the given digits.

123456789

Problem 2 :

Write the number that is 1000 more than 636272

(A) 637212         (B) 637272            (C) 632714

Solution :

636272 + 1000  =  637272

Problem 3 :

Write the roman numeral for XXVIII

(A) 42                (B) 28              (C) 36

Solution :

Roman numeral for XXVIII is 28.

Problem 4 :

Fill in the blank with the biggest digit possible.

764 _ 28.This number is divisible by 9.

(A) 3                       (B) 9                     (C) 7

Solution :

Let x be the unknown

7 + 6 + 4 + x + 2 + 8  =  27 + x

If x is 9, we get 36 and it is divisible by 9.

Problem 5 :

A number which does not have a factor other than the number itself and 1, is called _______________ number.

(A) Prime            (B) Composite        (C) None of these

Solution :

The number which does not have a factor other than 1 and itself is known as prime number.

Problem 6 :

The number which divides another number and gives no remainders is a ____________ of that number.

(A) divisor              (B) factor          (C) none of these

Solution :

For example, let us divide 6 by 2. We get 3 as quotient and 0 as remainder.

So, 2 is the factor of 6.

Problem 7 :

Find the HCF of 96 and 120.

(A) 24             (B) 35           (C) 12

Solution : =  2 ⋅ 2 ⋅ 2 ⋅ 3

=  24

So, the highest common factor is 24.

Problem 8 :

Find the value of 56.725 + 48.258 - 32.564

(A) 148.63           (B) 59.478        (C) 72.419

Solution :

56.725 + 48.258  ==>  104.983

104.983 - 32.564  ==>  72.419

Problem 9 :

In an Army camp provisions were there for 500 men for 28 days . If 400 men attended the camp, then how long did the provisions last ?

(A) 35 days           (B) 10 days      (C) 50 days

Solution :

Number of men came to provision  =  550

Number of days did it run  =  28

Total contextion  =  550  28  =  15400

If, number of men have come to the provision  =  700

Then, number of days will it run  =  15400 / 700

=  22 days.

If 700 men would have come, then the provision would have run for 22 days.

Problem 10 :

Find the number of days from November 10ᵗʰ 1997 to April 15ᵗʰ 1998.

(A) 85 days             (B) 156 days      (C) 79 days

Solution :

November  =  31 - 10 ==>  21

December  =  30

January  =  31

February  =  28

March  =  31

April  =  15

=  21+ 30 + 31 + 28 + 31 + 15

=  156 days Apart from the stuff given in this section, if you need any other stuff in math, please use our google custom search here.

Kindly mail your feedback to v4formath@gmail.com

Recent Articles 1. Multiplicative Inverse Worksheet

Jan 19, 22 09:34 AM

Multiplicative Inverse Worksheet

2. Multiplicative Inverse

Jan 19, 22 09:25 AM

Multiplicative Inverse - Concept - Examples