MATRIX DETERMINANT

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

In this page matrix determinant we are going to see how to find determinant for any matrix and examples based on this topic.

Definition :

For every square matrix A of order n with entries as real or complex numbers, we can associate a number called determinant of matrix A 

It is denoted by |A| or det (A) or ∆.

Example 1 :

Find determinant of the following matrix.

 
3 4 1
0 -1 2
5 -2 6
 

Solution :

A=
 
3 4 1
0 -1 2
5 -2 6
 

   = 3

 
-1 2

-2 6
 

-4

 
0 2

5 6
 

+1 

 
0 -1

5 -2
 

    =  3 [ -6-(-4) ] -4 [ 0-10 ]+1 [0-(-5)]

    =  3 [ -6+4 ] -4 [ -10 ]+1 [5]

    =  3 [ -2 ] -4 [ -10 ]+ 1 [5]

    =  -6 + 40 + 5

    =  -6 + 45

    =  39 

Example 2 :

Find determinant of the following matrix.

 
1 1 -1
2 1 -2
1 -1 1
 

Solution :

= 1

 
1 -2

-1 1
 

 -1

 
2 -2

1 1
 

 -1

 
2 1

1 -1
 

    =  1 [1-2 ] -1 [ 2-(-2) ] - 1 [-2-1]

    =  1 [-1] -1 [ 2+2 ] - 1 [-3]

    =  -1 -1 (4) + 3

    =  -1 -4 + 3

    =  -5 + 3

    =  -2

Example 3 :

Find determinant of the following matrix.

 
1 2 3
-1 3 4
2 0 -1
 

Solution :

=1

 
3 4

0 -1
 

-2

 
-1 4

2 -1
 

+3

 
-1 3

2 0
 

    =  1 [ -3 - 0 ] -2 [ 1 - 8 ] + 3 [0 - 6]

    =  1 [ -3 ] -2 [ -7 ] + 3 [- 6]

    =   -3 + 14 - 18

    =   -21 + 14

    =   -7               matrix determinant   matrix determinant  matrix determinant

Related Pages

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 7)

    Nov 26, 25 09:03 AM

    Digital SAT Math Problems and Solutions (Part - 7)

    Read More

  2. Hcf and Lcm Word Problems

    Nov 21, 25 09:03 AM

    Hcf and Lcm Word Problems

    Read More

  3. 10 Hard SAT Math Questions (Part - 35)

    Nov 21, 25 07:36 AM

    digitalsatmath407.png
    10 Hard SAT Math Questions (Part - 35)

    Read More