HOW TO SHOW THE GIVEN POINTS ARE COLLINEAR USING SECTION FORMULA

If three points are collinear, then one of the points divide the line segment joining the other two points in the ratio r : 1.

The section formula can be used only when the given three points are collinear.

Example :

Using section formula, show that the points A (7, −5), B (9, −3) and C (13, 1) are collinear.

Solution :

Section formula  =  (mx2+nx1) / (m+n),  (my2+ny1) / (m+n)

Let the point B divides the line segment joining the point A and C in the ratio k : 1

k (13) + 1 (7) / (k + 1), k (1) + 1 (-5) / (k + 1)  =  (9, -3)

(13k + 7)/(k + 1), (k - 5) / (k + 1)  =  (9, -3)

Equating the x and y coordinates

(13k + 7) / (k + 1)  =  9 

(13k + 7)  =  9(k + 1)

13k + 7 = 9k + 9

13k - 9k  =  9 - 7

4k  =  2

 k = 2/4

 k = 1/2

(k - 5) / (k + 1)  =  -3

k - 5  =  -3(k + 1)

k - 5  =  -3k - 3

k + 3k  =  -3 + 5

 4k  =  2

k  =  2/4

k  =  1/2

We get the same values for k, hence the point A, B and C are collinear.

Related topics

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. 10 Hard SAT Math Questions (Part - 13)

    Sep 14, 25 09:32 PM

    digitalsatmath364.png
    10 Hard SAT Math Questions (Part - 13)

    Read More

  2. 10 Hard SAT Math Questions (Part - 12)

    Sep 12, 25 09:50 PM

    10 Hard SAT Math Questions (Part - 12)

    Read More

  3. 10 Hard SAT Math Questions (Part - 11)

    Sep 11, 25 08:23 AM

    10 Hard SAT Math Questions (Part - 11)

    Read More