HOW TO DETERMINE IF THE POINTS ARE COLLINEAR USING DISTANCE FORMULA

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Let A, B and C be the three points. 

We have to find the three lengths AB, BC and AC among the given three points A, B and C.

The three points A, B and C are collinear, if the sum of the lengths of any two line segments among AB, BC and AC is equal to the length of the remaining line segment.

That is, 

AB + BC  =  AC

(or)

AB + AC  =  BC

(or)

AC + BC  =  AB

Example :

Using the concept of distance between two points, show that the points A(5, -2), B(4, -1) and C(1, 2) are collinear.

Solution :

We know the distance between the two points (x1, y1) and (x2, y2) is 

d  =  √[(x2 - x1)2 + (y2 - y1)2]

Let us find the lengths AB, BC and AC using the above distance formula. 

AB  =  √[(4 - 5)2 + (-1 + 2)2]

AB  =  √[(-1)2  + (1)2]

AB  =  √[1 + 1]

AB  =  √2

BC  =  √[(1 - 4)2 + (2 + 1)2]

BC  =  √[(-3)2  + (3)2]

BC  =  √[9 + 9]

BC  =  √18

BC  =  3√2

AC  =  √ [(1 - 5)2 + (2 + 2)2]

AC  =  √ [(-4)2  + (4)2]

AC  =  √ [16 + 16]

AC  =  √32

AC  =  4√2

Therefore, AB + BC  =  √2 + 3√2  =  4√2  =  AC

Thus, AB + BC  =  AC

Hence, the given three points A, B and C are collinear.

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

onlinemath4all_official_badge1.png

Recent Articles

  1. SAT Math Practice Hard Questions

    Feb 07, 26 08:28 AM

    SAT Math Practice Hard Questions

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 1)

    Feb 05, 26 09:37 AM

    digitalsatmath1.png
    Digital SAT Math Problems and Solutions (Part - 1)

    Read More

  3. AP Precalculus Problems and Solutions

    Feb 05, 26 06:41 AM

    precalculus.png
    AP Precalculus Problems and Solutions

    Read More