ADDITION AND SUBTRACTION OF SURDS

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Here we are going to see how to add and subtract surds.

Two or more like surds can be added or subtracted.

Like surds means the number inside the radical sign and order of the radical terms must be same.

For example 5√2 and -7√2 are like surds.

Some examples of like radicals

(i)  5√2 and -7√2 

(ii)  2 ∛7 and 3∛7

The numbers inside the radical sign is same and the order of the radicals is also same.Hence they are like radicals.

Some examples of unlike radicals

(i)  5√2 and -7 ∛2

(ii)  7 ∛2 and ∜8

In first example, the numbers inside the radical is same but order is not same.In the second example, the numbers inside the radical and order of the radicals are not same. 

Hence they are unlike radicals.

Let us look into some examples based on addition and subtraction of surds.

Example 1 :

Simplify 10√2 - 2√2 + 4√32

Solution :

10√2 - 2√2 + 4√32  =  10√2 - 2√2 + 4(2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2)

  =  10√2 - 2√2 + 4(2 ⋅ 2)2

  =  10√2 - 2√2 + 162

  =  (10 + 16 - 2)√2

  =  24 √2

Hence the answer is 24√2.

Example 2 :

Simplify √48 - 3√72 - √27 + 5√18

Solution :

√48 - 3√72 - √27 + 5√18

Let us find the factors the numbers inside the radicals

√48  =  (2 ⋅ 2 ⋅ 2 ⋅ 2⋅ 3)  =  (2 ⋅ 2)√3  =  4 √3

3√72  =  3(2 ⋅ 2 ⋅ 2 ⋅ 3 ⋅ 3)  =  (3 ⋅ 2 ⋅ 3)√2  =  18 √2

√27  (3 ⋅ 3 ⋅ 3)  =  3 √3

5√18  =  5√(3 ⋅ 3 ⋅ 2)  =  (5 ⋅ 3) √2  =  15√2

√48 - 3√72 - √27 + 5√18  =  4√3 - 18√2 - 3√3 + 15√2

  =  4√3 - 3√3 - 18√2 + 15√2

  =  1√3 - 3√2

Hence the answer is 1√3 - 3√2.

Example 3 :

Simplify ∛16 + 8∛54 - ∛128

Solution :

∛16 + 8∛54 - ∛128

Let us find the factors the numbers inside the radicals

∛16  =  ∛(2 ⋅ 2 ⋅ 2 ⋅ 2)  =  2∛2

8∛54  =  8 ∛(2 ⋅ 3 ⋅ 3 ⋅ 3)  =  (8 ⋅ 3) ∛2  =  24∛2

∛128  ∛(2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2)   =  (2 ⋅ 2)∛2  =  4∛2

∛16 + 8∛54 - ∛128  =  2∛2 + 24∛2 - 4∛2

  =  (2 + 24 - 4)∛2

  =  22∛2

Hence the answer is 22∛2. 

Example 4 :

Simplify 7∛2 + 6∛16 - ∛54

Solution :

7∛2 + 6∛16 - ∛54

Let us find the factors the numbers inside the radicals

6∛16  =  6∛(2 ⋅ 2 ⋅ 2 ⋅ 2)  =  (6 ⋅ 2) ∛2  =  12∛2

∛54  ∛(2 ⋅ 3 ⋅ 3 ⋅ 3)  =  3 ∛2  =  3∛2

7∛2 + 6∛16 - ∛54  =  7∛2 + 12∛2 - 3∛2

  =  (7 + 12 - 3)∛2

  =  16∛2

Related topics

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Quantitative Reasoning Questions and Answers

    Dec 14, 25 06:42 AM

    Quantitative Reasoning Questions and Answers

    Read More

  2. Specifying Units of Measure

    Dec 14, 25 06:38 AM

    Specifying Units of Measure

    Read More

  3. Coin Tossing Probability

    Dec 13, 25 10:11 AM

    Coin Tossing Probability - Concept - Sample Space - Formula - Solved Problems

    Read More