ADDITION AND SUBTRACTION OF SURDS

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Here we are going to see how to add and subtract surds.

Two or more like surds can be added or subtracted.

Like surds means the number inside the radical sign and order of the radical terms must be same.

For example 5√2 and -7√2 are like surds.

Some examples of like radicals

(i)  5√2 and -7√2 

(ii)  2 ∛7 and 3∛7

The numbers inside the radical sign is same and the order of the radicals is also same.Hence they are like radicals.

Some examples of unlike radicals

(i)  5√2 and -7 ∛2

(ii)  7 ∛2 and ∜8

In first example, the numbers inside the radical is same but order is not same.In the second example, the numbers inside the radical and order of the radicals are not same. 

Hence they are unlike radicals.

Let us look into some examples based on addition and subtraction of surds.

Example 1 :

Simplify 10√2 - 2√2 + 4√32

Solution :

10√2 - 2√2 + 4√32  =  10√2 - 2√2 + 4(2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2)

  =  10√2 - 2√2 + 4(2 ⋅ 2)2

  =  10√2 - 2√2 + 162

  =  (10 + 16 - 2)√2

  =  24 √2

Hence the answer is 24√2.

Example 2 :

Simplify √48 - 3√72 - √27 + 5√18

Solution :

√48 - 3√72 - √27 + 5√18

Let us find the factors the numbers inside the radicals

√48  =  (2 ⋅ 2 ⋅ 2 ⋅ 2⋅ 3)  =  (2 ⋅ 2)√3  =  4 √3

3√72  =  3(2 ⋅ 2 ⋅ 2 ⋅ 3 ⋅ 3)  =  (3 ⋅ 2 ⋅ 3)√2  =  18 √2

√27  (3 ⋅ 3 ⋅ 3)  =  3 √3

5√18  =  5√(3 ⋅ 3 ⋅ 2)  =  (5 ⋅ 3) √2  =  15√2

√48 - 3√72 - √27 + 5√18  =  4√3 - 18√2 - 3√3 + 15√2

  =  4√3 - 3√3 - 18√2 + 15√2

  =  1√3 - 3√2

Hence the answer is 1√3 - 3√2.

Example 3 :

Simplify ∛16 + 8∛54 - ∛128

Solution :

∛16 + 8∛54 - ∛128

Let us find the factors the numbers inside the radicals

∛16  =  ∛(2 ⋅ 2 ⋅ 2 ⋅ 2)  =  2∛2

8∛54  =  8 ∛(2 ⋅ 3 ⋅ 3 ⋅ 3)  =  (8 ⋅ 3) ∛2  =  24∛2

∛128  ∛(2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2)   =  (2 ⋅ 2)∛2  =  4∛2

∛16 + 8∛54 - ∛128  =  2∛2 + 24∛2 - 4∛2

  =  (2 + 24 - 4)∛2

  =  22∛2

Hence the answer is 22∛2. 

Example 4 :

Simplify 7∛2 + 6∛16 - ∛54

Solution :

7∛2 + 6∛16 - ∛54

Let us find the factors the numbers inside the radicals

6∛16  =  6∛(2 ⋅ 2 ⋅ 2 ⋅ 2)  =  (6 ⋅ 2) ∛2  =  12∛2

∛54  ∛(2 ⋅ 3 ⋅ 3 ⋅ 3)  =  3 ∛2  =  3∛2

7∛2 + 6∛16 - ∛54  =  7∛2 + 12∛2 - 3∛2

  =  (7 + 12 - 3)∛2

  =  16∛2

Related topics

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

onlinemath4all_official_badge.png

Recent Articles

  1. 10 Hard SAT Math Questions (Part - 43)

    Jan 04, 26 01:38 AM

    10 Hard SAT Math Questions (Part - 43)

    Read More

  2. 90 Degree Clockwise Rotation

    Jan 01, 26 06:58 AM

    90degreeclockwiserotation1.png
    90 Degree Clockwise Rotation - Rule - Examples with step by step explanation

    Read More

  3. US Common Core K-12 Curriculum Algebra Solving Systems of Equations

    Jan 01, 26 04:51 AM

    US Common Core K-12 Curriculum - Algebra : Solving Systems of Linear Equations

    Read More