# ASTC FORMULA

ASTC formula is nothing but 'all sin tan cos' rule in trigonometry.

The 'all sin tan cos' rule can be remembered easily using the following phrases.

All Sliver Tea Cups

or

All Students Take Calculus

ASTC formula has been explained clearly in the figure shown below.

More clearly

In the first quadrant (0° to 90°), all trigonometric ratios are positive.

In the second quadrant (90° to 180°), sin and csc are positive and other trigonometric ratios are negative.

In the third quadrant (180° to 270°), tan and cot are positive and other trigonometric ratios are negative.

In the fourth quadrant (270° to 360°), cos and sec are positive and other trigonometric ratios are negative.

## Important Conversions

When we have the angles 90° and 270° in the trigonometric ratios in the form of

(90° + θ)

(90° - θ)

(270° + θ)

(270° - θ)

We have to do the following conversions,

sin θ <------> cos θ

tan θ <------> cot θ

csc θ <------> sec θ

For example,

sin (270° + θ)  =  - cos θ

cos (90° - θ)  =  sin θ

For the angles 0° or 360° and  180°, we should not make the above conversions.

(90° - θ) -------> I st Quadrant

(90° + θ) and (180° - θ) -------> II nd Quadrant

(180° + θ) and (270° - θ) -------> III rd Quadrant

(270° + θ), (360° - θ) and (θ) -------> IV th Quadrant

## Evaluation of Trigonometric Ratios Using ASTC Formula - Examples

Example 1 :

Evaluate : cos (270° - θ)

Solution :

To evaluate cos (270° - θ), we have to consider the following important points.

(i)  (270° - θ) will fall in the III rd quadrant.

(ii)  When we have 270°, "cos" will become "sin"

(iii)  In the III rd quadrant, the sign of "cos" is negative.

Considering the above points, we have

cos (270° - θ)  =  - sin θ

Example 2 :

Evaluate : sin (180° + θ)

Solution :

To evaluate sin (180° + θ), we have to consider the following important points.

(i)  (180° + θ) will fall in the III rd quadrant.

(ii)  When we have 180°, "sin" will not be changed

(iii)  In the III rd quadrant, the sign of "sin" is negative.

Considering the above points, we have

sin (180° + θ)  =  - sin θ

Based on the above two examples, we can evaluate the following trigonometric ratios.

 sin (-θ)  =  - sin θcos (-θ)  =  cos θtan (-θ)  =  - tan θcsc (-θ)  =  - csc θsec (-θ)  =  sec θcot (-θ)  =  - cot θsin (90°-θ)  =  cos θcos (90°-θ)  =  sin θtan (90°-θ)  =  cot θcsc (90°-θ)  =  sec θsec (90°-θ)  =  csc θcot (90°-θ)  =  tan θsin (90°+θ)  =  cos θcos (90°+θ)  =  -sin θtan (90°+θ)  =  -cot θcsc (90°+θ)  =  sec θsec (90°+θ)  =  -csc θcot (90°+θ)  =  -tan θsin (180°-θ)  =  sin θcos (180°-θ)  =  -cos θtan (180°-θ)  =  -tan θ csc (180°-θ)  =  csc θsec (180°-θ)  =  -sec θcot (180°-θ)  =  -cot θsin (180°+θ)  =  -sin θcos (180°+θ)  =  -cos θtan (180°+θ)  =  tan θcsc (180°+θ)  =  -csc θsec (180°+θ)  =  -sec θcsc (180°+θ)  =  cot θsin (270°-θ)  =  -cos θcos (270°-θ)  =  -sin θtan (270°-θ)  =  cot θcsc (270°-θ)  =  -sec θsec (270°-θ)  =  -csc θcot (270°-θ)  =  tan θsin (270°+θ)  =  -cos θcos (270°+θ)  =  sin θtan (270°+θ)  =  -cot θcsc (270°+θ)  =  -sec θsec (270°+θ)  =  cos θcot (270°+θ)  =  -tan θ

## Angles Greater Than or Equal to 360°

If the angle is equal to or greater than 360°, we have to divide the given angle by 360 and take the remainder.

For example,

(i) Let us consider the angle 450°.

When we divide 450° by 360, we get the remainder 90°.

Therefore, 450°  =  90°

(ii) Let us consider the angle 360°

When we divide 360° by 360, we get the remainder 0°.

Therefore, 360°  =  0°

Based on the above two examples, we can evaluate the following trigonometric ratios.

sin (360° - θ)  =  sin (0° - θ)  =  sin (θ)  =  - sin θ

cos (360° - θ)  =  cos (0° - θ)  =  cos (θ)  =  cos θ

tan (360° - θ)  =  tan (0° - θ)  =  tan (θ)  =  - tan θ

csc (360° - θ)  =  csc (0° - θ)  =  csc (θ)  =  - csc θ

sec (360° - θ)  =  sec (0° - θ)  =  sec (θ)  =  sec θ

cot (360° - θ)  =  cot (0° - θ)  =  cot (θ)  =  - cot θ

## Practice Problems

Problem 1 :

Evaluate :

tan 735°

Solution :

The given 735° is greater than 360°.

So, we have to divide 735° by 360 and take the remainder.

When 735° is divided by 360, the remainder is 15°.

Therefore,

735°  =  15° ------> tan 735°  =  tan 15°

Hence, tan 735° is equal to tan 15°.

Problem 2 :

Evaluate :

cos (-870°)

Solution :

Since the given angle (-870°) has negative sign, we have to assume it falls in the fourth quadrant.

In the fourth quadrant, "cos" is positive.

So, we have cos (-870°)  =  cos 870°.

The given 870° is greater than 360°.

So, we have to divide 870° by 360 and take the remainder.

When 870° is divided by 360, the remainder is 150°.

Therefore,

870°  =  150° ------> cos 870°  =  cos 150°

cos 870°  =  cos (180° - 30°)

cos 870°  =  - cos 30°

cos 870  =  - √3 / 2

Hence, cos 870° is equal to √3/2.

Problem 3 :

Find the value of :

(sin 780 sin 480° + cos 120° cos 60°)

Solution :

Let us find the value of each trigonometric ratio for the given angle.

sin 780°  =  sin 60°  =   √3 / 2

sin 480°  =  sin 120°  =  sin (180° - 60°)  =  sin 60°  =  √3/2

cos 120°  =  cos (180° - 60°)  =  - cos 60°  =  - 1/2

cos 60°  =  1/2

sin780 sin480° + cos120° cos60° is

=  (√3/2) x (√3/2)  +  (-1/2) x (1/2)

=  (3/4) - (1/4)

=  (3-1) / 4

=  2 / 4

=  1/2

Hence, the value of the given trigonometric expression is equal to 1/2.

Problem 4 :

Simplify :

cot (90°-θ) sin(180°+θ) sec(360°-θ) / tan(180°+θ) sec(-θ) cos(90°+θ)

Solution :

Using ASTC formula, we have

cot (90°-θ)   =  tan θ

sin (180°+θ)  =  - sin θ

sec(360°-θ)  =  sec θ

tan(180°+θ)  =  tan θ

sec(-θ)  =  sec θ

cos(90°+θ)  =  - sin  θ

Then, the given expression is

= (tan θ x -sinθ x sec θ) / (tan θ x sec θ x -sin θ)

= 1

Hence, the simplification of the given trigonometric expression is equal to 1.

Problem 5 :

Simplify :

sec(360°-θ) tan(180°-θ)  + cot(90°+θ) csc(270°-θ)

Solution :

Using ASTC formula, we have

sec (360°-θ)   =  sec θ

tan (180°-θ)  =  - tan θ

cot (90°+θ)  =  - tan θ

csc (270°-θ)  =  - sec θ

Then, the given expression is

=  sec θ x (-tan θ)  +  (-tan θ) x (-sec θ)

=  - sec θ x tan θ  +  sec θ x tan θ

=  0

Hence, the simplification of the given trigonometric expression is equal to 0.

Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.

If you have any feedback about our math content, please mail us :

v4formath@gmail.com

You can also visit the following web pages on different stuff in math.

WORD PROBLEMS

Word problems on simple equations

Word problems on linear equations

Algebra word problems

Word problems on trains

Area and perimeter word problems

Word problems on direct variation and inverse variation

Word problems on unit price

Word problems on unit rate

Word problems on comparing rates

Converting customary units word problems

Converting metric units word problems

Word problems on simple interest

Word problems on compound interest

Word problems on types of angles

Complementary and supplementary angles word problems

Double facts word problems

Trigonometry word problems

Percentage word problems

Profit and loss word problems

Markup and markdown word problems

Decimal word problems

Word problems on fractions

Word problems on mixed fractrions

One step equation word problems

Linear inequalities word problems

Ratio and proportion word problems

Time and work word problems

Word problems on sets and venn diagrams

Word problems on ages

Pythagorean theorem word problems

Percent of a number word problems

Word problems on constant speed

Word problems on average speed

Word problems on sum of the angles of a triangle is 180 degree

OTHER TOPICS

Profit and loss shortcuts

Percentage shortcuts

Times table shortcuts

Time, speed and distance shortcuts

Ratio and proportion shortcuts

Domain and range of rational functions

Domain and range of rational functions with holes

Graphing rational functions

Graphing rational functions with holes

Converting repeating decimals in to fractions

Decimal representation of rational numbers

Finding square root using long division

L.C.M method to solve time and work problems

Translating the word problems in to algebraic expressions

Remainder when 2 power 256 is divided by 17

Remainder when 17 power 23 is divided by 16

Sum of all three digit numbers divisible by 6

Sum of all three digit numbers divisible by 7

Sum of all three digit numbers divisible by 8

Sum of all three digit numbers formed using 1, 3, 4

Sum of all three four digit numbers formed with non zero digits

Sum of all three four digit numbers formed using 0, 1, 2, 3

Sum of all three four digit numbers formed using 1, 2, 5, 6