Subscribe to our โถ๏ธ YouTube channel ๐ด for the latest videos, updates, and tips.
Addition and subtraction of two or more radical terms can be performed with like radicands only.
Like radicand means a number which is inside root sign must be same but the number outside the radical may be different.
For example,
5โ2 + 3โ2 = 8โ2
Here 5โ2 and 3โ2 are like radical terms.


Whenever we have two or more radical terms which are multiplied with same index, then we can put only one radical and multiply the terms inside the radical.
Whenever we have two or more radical terms which are dividing with same index, then we can put only one radical and divide the terms inside the radical.
Problem 1 :
Simplify the following radical expression
7โ30 + 2โ75 + 5โ50
Solution :
= 7 โ30 + 2 โ75 + 5 โ50
First we have to split the given numbers inside the radical as much as possible.

= โ(5 x 2 x 3) + โ(5 x 5 x 3) + โ(5 x 5 x 2)
Here we have to keep โ30 as it is.
= โ30 + 5 โ3 + 5 โ2
Problem 2 :
Simplify the following โ5 x โ18
Solution :
= โ5 x โ18
According to the laws of radical,
= โ(5 x 18) ==> โ(5 x 3 x 3) ==> 3 โ5
Problem 3 :
Simplify the following
โ7 x โ8
Solution :
= โ7 x โ8
According to the laws of radical,
= โ(7 x 8) ==> โ(7 x 2 x 2 x 2) ==> 2 โ7 x 2 ==> 2 โ14
Problem 4 :
Simplify the following
3โ35 รท 2โ7
Solution :
= 3โ35 รท 2โ7
According to the laws of radical,
= (3/2) โ(35/7) ==> (3/2)โ5
Problem 5 :
Which of the following is not a perfect square?
(a) 361 (b) 1156 (c) 1128 (d) 1681
Solution :
By observing perfect squares,
1, 4, 9, 16, 25, 36, 49, 64, 81, 100, ............
These are the perfect squares ends with the digits 0, 1, 4, 5, 6, 9. The perfect squares will not ends with 2, 3, 6, 7, 8
In option c, the unit digit is 8, it is not a perfect square.
Problem 6 :
A perfect square can never have the following digit at ones place.
(a) 1 (b) 6 (c) 5 (d) 3
Solution :
By observing the above perfect squares, the number ends with the digit 3 will not be a perfect square. So, option d is correct.
Problem 7 :
The value of โ(176 + โ2401)
Solution :
= โ(176 + โ2401)
Let us start with most interior bracket.
= โ(176 + โ(7 โ 7 โ 7 โ 7)
= โ(176 + (7 โ 7)
= โ(176 + 49)
= โ225
= โ(15 โ 15)
= 15
Problem 8 :
Given that โ5625 = 75, then the value of
โ0.5625 + โ56.25
is
Solution :
โ5625 = 75
โ0.5625 = โ0.5625(10000/10000)
= โ(5625/10000)
= โ(75 x 75/100 x 100)
= 75/100
= 0.75
โ56.25 = โ56.25(100/100)
= โ(5625/100)
= โ(75 x 75) / (10 x 10)
= 75/10
= 7.5
โ0.5625 + โ56.25 = 0.75 + 7.5
= 8.25
Problem 9 :
The value of โ248(โ52 + (โ144)) is
Solution :
= โ(248 + (โ52 + (โ144)))
We start with most inner bracket
= โ(248 + โ(52 + (โ12 โ 12)))
= โ(248 + โ(52 + 12))
= โ(248 + โ64)
= โ(248 + โ(8 โ 8)
= โ(248 + 8)
= โ256
= โ16โ 16
= 16
So, the answer is 16.
Problem 10 :
Simplify 1/(2 - โ3)
Solution :
= 1/(2 - โ3)
To rationalize the denominator, we have to multiply both numerator and denominator by its conjugate.
= [1/(2 - โ3)] โ [(2 + โ3) / (2 - โ3)]
= (2 + โ3) / (2 - โ3) (2 + โ3)
= (2 + โ3) / (22 - โ32)
= (2 + โ3) / (4 - 3)
= 2 + โ3
Problem 11 :
Simplify (6 - โ2)(โ3 + 1)
Solution :
= (6 - โ2)(โ3 + 1)
Using distributive property,
= 6โ3 + 6(1) - โ2โ3 - โ2(1)
= 6โ3 + 6 - โ6 - โ2
Since we dont have any like terms, it cannot be simplified further. So, the answer is 6โ3 + 6 - โ6 - โ2
Problem 12 :
Simplify โ50 - โ18 + โ8
Solution :
= โ50 - โ18 + โ8
= โ2 โ 5 โ 5 - โ2 โ 3 โ 3 + โ2 โ 2 โ 2
= 5โ2 - 3โ2 + 2โ2
= 5โ2 + 2โ2 - 3โ2
= 7โ2 - 3โ2
= 4โ2
Problem 13 :
Simplify โ6 - (โ2/โ3) + (โ3/โ2)
Solution :
= โ6 - (โ2/โ3) + (โ3/โ2)
To rationalize the denominator of โ2/โ3, we have to multiply both numerator and denominator by โ3
= (โ2/โ3) โ (โ3/โ3)
= โ6/3
To rationalize the denominator of โ3/โ2, we have to multiply both numerator and denominator by โ2
= (โ3/โ2) โ (โ2/โ2)
= โ6/2
Applying these values, we get
= โ6 - (โ6/3) + (โ6/2)
= (6โ6 - 2โ6 + 3โ6)/6
= 7โ6/6
Problem 14 :
Solve the equation โ(5 - 2x) = 3
Solution :
โ(5 - 2x) = 3
To solve the radical equation, we have to use square on both sides.
(5 - 2x) = 32
5 - 2x = 9
2x = 5 - 9
2x = -4
x = -4/2
x = -2
Problem 15 :
Solve the equation โ-5 โ-10
Solution :
= โ-5 โ-10
= โ-5(-10)
= โ50
= โ(2โ 5โ 5)
= 5โ2
Subscribe to our โถ๏ธ YouTube channel ๐ด for the latest videos, updates, and tips.
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
ยฉAll rights reserved. onlinemath4all.com
Nov 28, 25 09:55 AM
Nov 26, 25 09:03 AM
Nov 21, 25 09:03 AM