For solving such a problems we have to consider the following rules :
If A, B and C are three finite sets then :
n(AUBUC)
=  n(A)+n(B)+n(C)-n(A∩B)-n(B∩C)-n(A∩C)+n(A∩B∩C)
Question 1 :
 For any three sets A,B and C if n(A) = 17, n(B) = 17, n(C) =  17, n(A∩B)  =  7, n(B∩C)  =  6, (A∩C)  =  5 and n(A∩B∩C) = 2, find n (AUBUC).
Solution :
n(A) = 17
n(B) = 17
n(C) = 17
n(A∩B) = 7
n(B∩C) = 6
(A∩C) = 5
n(AUBUC)
= n(A)+n(B)+n(C)-n(A∩B)-n(B∩C)-n(A∩C)+n (A∩B∩C)
= 17 + 17 + 17 - 7 - 6 - 5 + 2
= 53 - 18 + 2
= 55 - 20
n (AUBUC) = 35
Question 2 :
verify
n(AUBUC)
= n(A)+n(B)+n(C)-n(A∩B)-n(B∩C)-n (A∩C)+n(A∩B ∩C)
(i) A = {4, 5, 6}, B = {5, 6, 7, 8} and C = {6, 7, 8, 9}
Solution :
A  =  {4, 5, 6}
B = {5, 6, 7, 8}
C = {6, 7, 8, 9}
n(A) = 3, n(B) = 4, n(C) = 4
| 
 A∩B = {5, 6} n(A∩B)  =  2  | 
 B∩ C = {6,7,8} n (B∩C) = 3  | 
 A∩C = {6} n(A∩C) = 1  | 
A∩B∩C = {6}, n(A∩B∩C) = 1
n(AUBUC)
= n(A)+n(B)+n(C)-n(A∩B)-n(B∩C)-n(A∩C)+n(A∩B∩C)
= 3 + 4 + 4 - 2 - 3 - 1 + 1
= 11 - 6 + 1
= 12 - 6
= 6
(ii) A = {a, b, c, d, e} B = {x, y, z} and C = {a, e, x}
Solution :
A = {a, b, c, d, e} B = {x, y, z} and C = {a, e, x}
n(A) = 5 , n(B) = 3, n(C) = 3
| 
 n(A∩B)  =  0  | 
 B∩C = {x} n (B∩C) = 1  | 
 C∩A = {a, e} n (C∩A) = 2  | 
n (A∩B∩C)  =  0
n(AUBUC)
= n(A)+n(B)+n(C)-n(A∩B)-n(B∩C)-n(A∩C)+n(A∩B∩C)
= 5 + 3 + 3 - 0 - 1 - 2 + 0
= 11 - 3
n (AUBUC) = 8
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Oct 30, 25 08:57 AM
Oct 27, 25 10:32 AM
Oct 20, 25 07:13 AM