Subscribe to our βΆοΈ YouTube channel π΄ for the latest videos, updates, and tips.
What is vertically opposite angles ?
The pair of angles that are opposite each other measure the same number of degrees and are equal.

<COD + <AOD = 180 -------(1)
<COB + <BOD = 180 -------(2)
(1) = (2)
<COD + <AOD = <COB + <BOD
Find the value(s) of the variable(s) :
Example 1 :

Solution :
In the given figure,
<APC = <BPD (vertically opposite angles)
Here <APC = 105Λ and <BPD = (2x β 11)Λ
105Λ = (2x β 11)Λ
105Λ + 11Λ = 2xΛ
116Λ = 2x
x = 58Λ
So, the value of x is 58Λ
Example 2 :

Solution :
In the given figure,
<APD = (6x + 19)Λ (vertical angle)
<BPD = xΛ (adjacent angle)
We know that a vertical angle and its adjacent angle are supplementary angles.
So,
<APD + <BPD = 180Λ
(6x + 19)Λ + xΛ = 180Λ
6xΛ + 19Λ + xΛ = 180Λ
7xΛ = 180Λ - 19Λ
7xΛ = 161Λ
x = 23Λ
So, the value of x is 23Λ
Example 3 :

Solution :
In the given figure,
<APC = <BPD (vertically opposite angles)
Here <APC = 78Λ and <BPD = (5x β 2)Λ
78Λ = (5x β 2)Λ
78Λ + 2Λ = 5xΛ
80Λ = 5x
x = 16Λ
So, the value of x is 16Λ
Example 4 :

Solution :
In the given figure,
<APD = (6x - 32)Λ (vertical angle)
<BPD = (2x β 20)Λ (adjacent angle)
We know that a vertical angle and its adjacent angle are supplementary angles.
So,
<APD + <BPD = 180Λ
6x - 32Λ+ 2x - 20Λ = 180Λ
8x β 52Λ = 180Λ
8x
= 232Λ
x = 29Λ
Then,
<APC = (y β 12)Λ (vertical angle)
<BPC = (3y β 8)Λ (adjacent angle)
So,
<APC + <BPC = 180Λ
y β 12Λ + 3y β 8Λ = 180Λ
4y - 20Λ = 180Λ
4y = 180Λ + 20Λ
4y = 200Λ
y = 50Λ
Example 5 :

Solution :
In the given figure,
<APD = (4x + 10)Λ (vertical angle)
<BPD = (3x β 5)Λ (adjacent angle)
So,
<APD + <BPD = 180Λ
4x + 10Λ+ 3x - 5Λ = 180Λ
7x + 5Λ = 180Λ
7x = 180Λ - 5Λ
7x = 175Λ
x = 25Λ
Then,
<APC = (2y + 28)Λ (vertical angle)
<BPC = (4y + 26)Λ (adjacent angle)
<APC + <BPC = 180Λ
2y + 28Λ + 4y + 26Λ = 180Λ
6y + 54Λ = 180Λ
6y = 180Λ - 54Λ
6y = 126Λ
y = 21Λ
Example 6 :

Solution :
In the given figure,
<APD = (7x - 248)Λ (vertical angle)
<BPD = (x + 44)Λ (adjacent angle)
So,
<APD + <BPD = 180Λ
7x - 248Λ+ x + 44Λ = 180Λ
8x - 204Λ = 180Λ
8x = 180Λ + 204Λ
8x = 384Λ
x = 48Λ
Then,
<APC = (9y - 187)Λ (vertical angle)
<BPC = (11y - 253)Λ (adjacent angle)
So,
<APC + <BPC = 180Λ
9y - 187Λ + 11y - 253Λ = 180Λ
20y - 440Λ = 180Λ
20y = 180Λ + 440Λ
20y = 620Λ
y = 31Λ
Example 7 :

Solution :
In the given figure,
<APD = <BPC (vertically opposite angles)
Here <APD = (3x + 20)Λ and <BPD = (5x β 50)Λ
3x + 20Λ = 5x β 50Λ
3x - 5x = -50Λ - 20Λ
-2x = -70Λ
x = 35Λ
Then,
<APC = yΛ (vertical angle)
<BPC = (5x - 50)Λ (adjacent angle)
So,
<APC + <BPC = 180Λ
yΛ + 5x - 50Λ = 180Λ
yΛ + 5(35Λ) - 50Λ = 180Λ
y + 175Λ - 50Λ = 180Λ
y + 125Λ = 180Λ
y = 180Λ - 125Λ
y = 55Λ
Example 8 :

Solution :
In the given figure,
<APC = <BPD (vertically opposite angles)
Here <APC = 6xΛ and <BPD = (4x + 16)Λ
6xΛ = 4x + 16Λ
6x - 4x = 16Λ
2x = 16Λ
x = 8Λ
Then,
<APC = 6xΛ (vertical angle)
<BPC = 11yΛ (adjacent angle)
So,
<APC + <BPC = 180Λ
6xΛ + 11yΛ = 180Λ
6(8Λ) + 11yΛ = 180Λ
48Λ + 11yΛ = 180Λ
11yΛ = 180Λ - 48Λ
11y = 132Λ
y = 12Λ
Example 9 :

Solution :
In the given figure,
<APC = <BPD (vertically opposite angles)
Here <APC = 7xΛ and <BPD = 56Λ
7xΛ = 56Λ
x = 8Λ
Then,
<CPE = 2xΛ (vertical angle)
<BPE = yΛ (adjacent angle)
So,
<APC + <BPC = 180Λ
2xΛ + yΛ = 180Λ
2(8Λ) + yΛ = 180Λ
16Λ + yΛ = 180Λ
yΛ = 180Λ - 16Λ
y = 164Λ
Example 10 :
l and m are parallel and a line t intersects these lines at P and Q, respectively. Find the sum 2a + b.

Solution :
Example 11 :
In the accompanying diagram, parallel lines π»πΈ and π΄π· are intersected by transversal π΅πΉ at G and C, respectively.
If π < π»πΊπΉ = 5π and π < π΅πΆπ· = 2π + 66, what is π < π»πΊπΉ and π < πΉπΊπΈ?

Solution :
<HGF = <ACG (vertically opposite angles)
5n = 2n + 66
5n - 2n = 66
3n = 66
n = 66/3
n = 22
π < π»πΊπΉ = 5(22)
= 110
π < πΉπΊπΈ = 180 - 110
= 70
Example 12 :
Given: π < 3 = 3π₯ + 30 and π < 7 = 5π₯
a) The relationship is:
b) The equation is:
c) Angle 3

Solution :
π < 3 = 3π₯ + 30 and π < 7 = 5π₯
These angles are corresponding angles.
3x + 30 = 5x
30 = 5x - 3x
30 = 2x
x = 30/2
x = 15
To find angle measure 3, we apply the value of x in 3x + 30
= 3(15) + 30
= 45 + 30
= 75
Subscribe to our βΆοΈ YouTube channel π΄ for the latest videos, updates, and tips.
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
Β©All rights reserved. onlinemath4all.com
Dec 03, 25 07:02 AM
Dec 02, 25 09:27 AM
Nov 28, 25 09:55 AM