PRACTICE PROBLEMS ON FINDING ROOTS OF A COMPLEX NUMBER

Find the cube roots of a complex number

1)  2(cos 2π + i sin 2π)

2)  2(cos π/4 + i sin π/4)

3)  3(cos 4π/3 + i sin 4π/3)

4)  27(cos 11π/6 + i sin 11π/6)

5)  -2 + 2i

6)  Determine the fourth roots of –8 + 83 i . Give answers in rectangular form.

Solution

Answers :

1)  z0 3√2(cis (2π/3))

z1 3√2(cis (8π/3))

z2 3√2(cis (10π/3))

2)  z0  =  3√2(cis (π/12))

z1  =  3√2(cis (9π/12))

z2  =  3√2(cis (17π/12))

3)  z0  =  3√3(cis (4π/9))

z1  =  3√3(cis (10π/9))

z2  =  3√2[cis (16π/9))

4)  z0  =  3(cis (11π/18))

z1  =  3(cis (23π/18))

z2  =  3(cos (35π/18))

5)  z0  =  6√8(cis (3π/12))

z1  =  6√8(cos (11π/12))

z2  =  6√8(cos (19π/12))

6)   z0  = (√3 + i)

z1  = (-1 + i√3)

z2 = -√3 - i

z3  = 1 - i√3

Find the nth roots of a complex number

1)  1 + i,   n  =  4

2)  1 - i,   n  =  6

3)  2 + 2i,   n  =  3

4)  -2 + 2i,   n  =  4

Solution

Answer Key

1)  z0  =  8√2(cis (π/16))

z1  =  8√2(cis (9π/16))

z2  =  8√2(cis (17π/16))

z3  =  8√2(cis (25π/16))

2)  z0  =  12√2(cis (π/24))

z1  =  8√2(cis (7π/24))

z2  =  12√2(cis (5π/8))

z3  =  12√2(cis (23π/24))

z4  =  12√2(cis (31π/24))

z5  =  12√2(cis (39π/24))

3)  z0  =  6√8(cis (π/12))

z1  =  6√8(cis (3π/4))

z2  =  6√8(cis (17π/12))

4)  z0  =  8√8(cis (3π/16))

z1  =  8√8(cis (11π/16))

z2  =  8√8(cis (19π/16))

z3  =  8√8(cis (27π/16))

Find the indicated power of a complex number

1)  (cos π/4 + i sin π/4)3

2)  [3(cos 3π/2 + i sin 3π/2)]5

3)  [2(cos 3π/4 + i sin 3π/4)]3

4)  (1 + i)5

5)  (1 - √3i)3

6)  (-1 - 6i)3

7)  (3 – 2i)(5 + 4i) – (3 – 4i)2

8)  (1 - 2i)2 - (1 + 2i)2

9)  (2 + 3i)2 - (2 - 3i)2

Solution

Answer Key

1)  z3  =  -√2/2 + i √2/2

2)  z5  =  243i

3)  z3  =  4√2 + i 4√2

4)  z5  =  -4 - 4i

5)  z3  =  -8

6)  107 + 198i

7)  23 + 2i

8)  -8i

9)  24i

1)  Find the square root of the following 

7 - 24i

Solution

2)  Find the square root of the following 

-15 - 8i

Solution

3)  Find the square root of the following 

-8 - 6i

Solution

4)  Find the square root of the following 

-3 + 4i

Solution

5)  If [(1 - i)/(1 + i)]100 = a + ib, then find ab.

Solution

6)  If 1 + i is the root of the equation x2 + ax + b where a and b ∈ then find the value of a + b.

Solution

Answer Key

1)  Hence the square root of the given complex number are

4 - 3i or (-4 + 3i)

2)  Hence the square root of the given complex number are

1 - 4i or (-1 + 4i)

3)  Hence the square root of the given complex number are

1 - 3i or (-1 + 3i)

4)  Hence the square root of the given complex number are

1 + 2i or (-1 - 2i)

5) ab = 0

6)  the value of a + b = 0

Question 1 :

Solve the equation z3 + 27 = 0

Solution

Question 2 :

If ω ≠  1 is a cube root of unity, show that the roots of the equation (z −1)3 + 8 = 0 are −1, 1− 2ω, 1− 2ω2

Solution

Question 3 :

Find the value of

12thnewsylabusex2.8q7.png

Solution

Question 4 :

If ω ≠  1 is a cube root of unity, show that

(i) (1 − ω + ω2)6 + (1 + ω − ω2)6  =  128.

(ii) (1 − ω)(1 + ω2)(1 + ω4)(1 + ω8).............(1 + ω2^11)  =  1

Solution

Question 5 :

If z = 2 - 2i, find rotation of z by θ radians in the counter clock wise direction about the origin when

(i)  θ = π/3    (ii) θ = 2π/3    (iii) θ = 3π/2

Solution

Question 6 :

If

[(1 + i)/(1 - i)]3[(1 - i)/(1 + i)]3 = x + iy

then find (x, y).

Solution

Answer Key

1)  3 cis (π/3), -3, 3 cis (5π/3)

2) Proved 

3)  1

4)  proved

5)  i)  2√2 (cos (π/12) + i sin (π/12))

ii)  2√2 (cos (5π/12) + i sin (5π/12))

iii) 2√2 (cos (5π/4) + i sin (5π/4))

6)  x = 0 and y = 2

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 266)

    Aug 26, 25 08:50 AM

    digitalsatmath373.png
    Digital SAT Math Problems and Solutions (Part - 266)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 265)

    Aug 24, 25 09:41 PM

    Digital SAT Math Problems and Solutions (Part - 265)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 264)

    Aug 23, 25 08:48 PM

    Digital SAT Math Problems and Solutions (Part - 264)

    Read More