Subscribe to our ā¶ļø YouTube channel š“ for the latest videos, updates, and tips.
Question 1 :
Solve the equation z3 + 27 = 0.
Solution :
z3 + 27 = 0
z3 = -27
z3 = (-1 ā 3)3
z = [(-1 ā (3)3] 1/3
= 3 (-1)1/3
Polar form of -1 :
-1 = 3[cos Ļ + i sin Ļ]
= [cos(2kĻ + Ļ) + i sin (2kĻ + Ļ)]
= [cos Ļ(2k + 1)) + i sin Ļ(2k + 1)]
(-1)1/3 = [cos Ļ(2k + 1)) + i sin Ļ(2k + 1)]1/3
(-1)1/3 = [cos (Ļ/3)(2k + 1)) + i sin (Ļ/3)(2k + 1)]
k = 0, 1, 2
If k = 0
= [cos (Ļ/3)(2k + 1)) + i sin (Ļ/3)(2k + 1)]
= 3 cis (Ļ/3)
If k = 1
= 3 [cos Ļ + i sin Ļ]
= -3
If k = 2
= [cos (5Ļ/3) + i sin (5Ļ/3)]
= 3 cis (5Ļ/3)
Question 2 :
If Ļ ā 1 is a cube root of unity, show that the roots of the equation (z ā1)3 + 8 = 0 are ā1, 1ā 2Ļ, 1ā 2Ļ2
Solution :
(z ā1)3 + 8 = 0
(z ā1)3 = -8
(z ā1) = (-8)1/3
(z ā1) = -2 ā (1) 1/3
z = -2 ā (1) 1/3 + 1
z = 1 - 2 ā (1) 1/3
Cube root of 1 are 1, Ļ, Ļ2
z = 1 - 2 ā 1
z = 1 - 2 = -1
z = 1 - 2 ā Ļ
z = 1 - 2Ļ
z = 1 - 2 ā Ļ2
z = 1 - 2Ļ2
Question 3 :
Find the value of

Solution :
If k = 1,
= cos 2Ļ/9 + i sin 2Ļ/9 ----(1)
If k = 2,
= cos 4Ļ/9 + i sin 4Ļ/9 ----(2)
If k = 3,
= cos 6Ļ/9 + i sin 6Ļ/9 ----(3)
If k = 4,
= cos 8Ļ/9 + i sin 8Ļ/9 ----(4)
...................
By adding all these, we get
= cis (Ļ/9) (2 + 4 + 6 + 8 + 10 + 12 + 14 + 16)
= cis (Ļ/9) 2(1 + 2 + 3 + 4 + 5 + 6 + 7 + 8)
= cis (72Ļ/9)
= cis 8Ļ
= cos 8Ļ + i sin 8Ļ
= 1 + i(0)
= 1
Question 4 :
If Ļ ā 1 is a cube root of unity, show that
(i) (1 ā Ļ + Ļ2)6 + (1 + Ļ ā Ļ2)6 = 128.
(ii) (1 ā Ļ)(1 + Ļ2)(1 + Ļ4)(1 + Ļ8).............(1 + Ļ2^11) = 1
Solution :
(i) (1 ā Ļ + Ļ2)6 + (1 + Ļ ā Ļ2)6 = 128.
L.H.S:
= (1 + Ļ2 ā Ļ)6 + (1 + Ļ ā Ļ2)6
= (- Ļ ā Ļ)6 + (-Ļ2 ā Ļ2)6
= (- 2Ļ) 6 + (- 2Ļ2) 6
= 64 Ļ6 + 64Ļ12
= 64 (Ļ3)2 + 64 (Ļ3)4
= 64 + 64
= 128
R.H.S
Hence proved.
(ii) (1 ā Ļ)(1 + Ļ2)(1 + Ļ4)(1 + Ļ8).............(1 + Ļ2^11) = 1
L.H.S
(1 ā Ļ)(1 + Ļ2)(1 + Ļ4)(1 + Ļ8)(1 + Ļ16) (1 + Ļ32) (1 + Ļ64)
(1 + Ļ128)(1 + Ļ256)(1 + Ļ512)(1 + Ļ1024)(1 + Ļ2048)
First 2 terms are = (1 ā Ļ)(1 + Ļ2)
3rd and 4th terms :
(1 + Ļ4)(1 + Ļ8) = (1 + Ļ)(1 + Ļ2)
5th and 6th terms :
(1 + Ļ16)(1 + Ļ32) = (1 + Ļ)(1 + Ļ2)
Similarly by grouping these terms, we get
= [(1 + Ļ)(1 + Ļ2)]6
= [1 + Ļ2 + Ļ + Ļ3 ]6
= [0 + Ļ3 ]6
= 1
Hence proved.
Question 5 :
If z = 2 - 2i, find rotation of z by Īø radians in the counter clock wise direction about the origin when
(i) Īø = Ļ/3 (ii) Īø = 2Ļ/3 (iii) Īø = 3Ļ/2
Solution :
z = 2 - 2i
Finding modulus :
z = ā22 + (-2)2
z = ā4 + 4
z = 2ā2
Finding argument :
α = tan-1|(-2)/2|
α = tan-1|(-2)/2|
α = tan-1|-1|
α = Ļ/4
Since (2, -2) lies in the fourth quadrant, θ = -α
Then Īø = -Ļ/4
2 - 2i = 2ā2 (cos (-Ļ/4) + i sin (-Ļ/4))
i)
z is rotated by Ļ/3 in counter clock wise direction, then
2 - 2i = 2ā2 (cos (Ļ/3 - Ļ/4) + i sin (Ļ/3 - Ļ/4))
= 2ā2 (cos (4Ļ - 3Ļ)/12) + i sin (4Ļ - 3Ļ)/12)
= 2ā2 (cos (Ļ/12) + i sin (Ļ/12))
ii)
z is rotated by 2Ļ/3 in counter clock wise direction, then
2 - 2i = 2ā2 (cos (2Ļ/3 - Ļ/4) + i sin (2Ļ/3 - Ļ/4))
= 2ā2 (cos (8Ļ - 3Ļ)/12) + i sin (8Ļ - 3Ļ)/12)
= 2ā2 (cos (5Ļ/12) + i sin (5Ļ/12))
iii)
z is rotated by 3Ļ/2 in counter clock wise direction, then
2 - 2i = 2ā2 (cos (3Ļ/2 - Ļ/4) + i sin (3Ļ/2 - Ļ/4))
= 2ā2 (cos (6Ļ - Ļ)/4) + i sin (6Ļ - Ļ)/4)
= 2ā2 (cos (5Ļ/4) + i sin (5Ļ/4))
Question 6 :
If
[(1 + i)/(1 - i)]3 - [(1 - i)/(1 + i)]3 = x + iy
then find (x, y).
Solution :
[(1 + i)/(1 - i)]
To convert it as complex number, we have to multiply both numerator and denominator by the conjugate of the denominator.
= [(1 + i)/(1 - i)] [(1 + i) / (1 + i)]
= (1 + i)(1 + i)/(1 - i)(1 + i)
= (12 + i + i + i2) / (12 - i2)
= (12 + 2i - 1) / (1+1)
= 2i/2
[(1 + i)/(1 - i)] [(1 + i) / (1 + i)] = i