SOLVE EQUATIONS IN COMPLEX NUMBERS WITH CUBE ROOTS OF UNITY

Subscribe to our ā–¶ļø YouTube channel šŸ”“ for the latest videos, updates, and tips.

Question 1 :

Solve the equation z3 + 27 = 0.

Solution :

z3 + 27 = 0

z3   =  -27

z3   =  (-1 ā‹… 3)3

z   =  [(-1 ā‹… (3)3] 1/3

  = 3 (-1)1/3

Polar form of -1 :

-1  =  3[cos Ļ€ + i sin Ļ€]

  =  [cos(2kĻ€ + Ļ€) + i sin (2kĻ€ + Ļ€)]

  =  [cos Ļ€(2k + 1)) + i sin Ļ€(2k + 1)]

 (-1)1/3  =  [cos Ļ€(2k + 1)) + i sin Ļ€(2k + 1)]1/3

 (-1)1/3  =  [cos (Ļ€/3)(2k + 1)) + i sin (Ļ€/3)(2k + 1)]

k = 0, 1, 2

If k = 0

  =  [cos (Ļ€/3)(2k + 1)) + i sin (Ļ€/3)(2k + 1)]

  =  3 cis (Ļ€/3)

If k = 1

  =  3 [cos Ļ€ + i sin Ļ€]

  =  -3

If k = 2

  =  [cos (5Ļ€/3) + i sin (5Ļ€/3)]

  =  3 cis (5Ļ€/3)

Question 2 :

If Ļ‰ ā‰   1 is a cube root of unity, show that the roots of the equation (z āˆ’1)3 + 8 = 0 are āˆ’1, 1āˆ’ 2ω, 1āˆ’ 2ω2

Solution :

(z āˆ’1)3 + 8 = 0

(z āˆ’1)3 = -8

(z āˆ’1) = (-8)1/3 

(z āˆ’1) = -2 ā‹… (1) 1/3 

z  =  -2 ā‹… (1) 1/3  + 1

z  =  1 - 2 ā‹… (1) 1/3 

Cube root of 1 are 1, Ļ‰, Ļ‰2

z  =  1 - 2 ā‹… 1 

z  =  1 - 2  =  -1

z  =  1 - 2 ā‹… Ļ‰

 z  =  1 - 2ω

z  =  1 - 2 ā‹… Ļ‰2

 z  =  1 - 2ω2

Question 3 :

Find the value of

Solution :

If k = 1,

 =  cos 2Ļ€/9 + i sin 2Ļ€/9 ----(1)

If k = 2,

 =  cos 4Ļ€/9 + i sin 4Ļ€/9 ----(2)

If k = 3,

 =  cos 6Ļ€/9 + i sin 6Ļ€/9 ----(3)

If k = 4,

 =  cos 8Ļ€/9 + i sin 8Ļ€/9 ----(4)

...................

By adding all these, we get

  =  cis (Ļ€/9) (2 + 4 + 6 + 8 + 10 + 12 + 14 + 16)

  =  cis (Ļ€/9) 2(1 + 2 + 3 + 4 + 5 + 6 + 7 + 8)

  =  cis (72Ļ€/9)

  =  cis 8Ļ€

  =  cos 8Ļ€ + i sin 8Ļ€

  =  1 + i(0)

  =  1

Question 4 :

If Ļ‰ ā‰   1 is a cube root of unity, show that

(i) (1 āˆ’ Ļ‰ + Ļ‰2)6 + (1 + Ļ‰ āˆ’ Ļ‰2)6  =  128.

(ii) (1 āˆ’ Ļ‰)(1 + Ļ‰2)(1 + Ļ‰4)(1 + Ļ‰8).............(1 + Ļ‰2^11)  =  1

Solution :

(i) (1 āˆ’ Ļ‰ + Ļ‰2)6 + (1 + Ļ‰ āˆ’ Ļ‰2)6  =  128.

L.H.S: 

  =  (1 + Ļ‰āˆ’ Ļ‰)6 + (1 + Ļ‰ āˆ’ Ļ‰2)6 

  =  (- Ļ‰ āˆ’ Ļ‰)6 + (-Ļ‰āˆ’ Ļ‰2)6 

  =  (- 2ω) 6  + (- 2ω2) 6

  =  64 Ļ‰6  + 64ω12

  =  64 (ω3)2 + 64 (ω3)4

  =  64 + 64

  =  128

R.H.S

Hence proved.

(ii) (1 āˆ’ Ļ‰)(1 + Ļ‰2)(1 + Ļ‰4)(1 + Ļ‰8).............(1 + Ļ‰2^11)  =  1

L.H.S

(1 āˆ’ Ļ‰)(1 + Ļ‰2)(1 + Ļ‰4)(1 + Ļ‰8)(1 + Ļ‰16) (1 + Ļ‰32) (1 + Ļ‰64)

(1 + Ļ‰128)(1 + Ļ‰256)(1 + Ļ‰512)(1 + Ļ‰1024)(1 + Ļ‰2048)

First 2 terms are   =  (1 āˆ’ Ļ‰)(1 + Ļ‰2)

3rd and 4th terms :

(1 + Ļ‰4)(1 + Ļ‰8)  =  (1 + Ļ‰)(1 + Ļ‰2)

5th and 6th terms :

(1 + Ļ‰16)(1 + Ļ‰32)  =  (1 + Ļ‰)(1 + Ļ‰2)

Similarly by grouping these terms, we get 

=  [(1 + Ļ‰)(1 + Ļ‰2)]6

=  [1 + Ļ‰2 + Ļ‰ + Ļ‰3 ]6

=  [0 + Ļ‰3 ]6

=  1

Hence proved.

Question 5 :

If z = 2 - 2i, find rotation of z by Īø radians in the counter clock wise direction about the origin when

(i)  Īø = Ļ€/3    (ii) Īø = 2Ļ€/3    (iii) Īø = 3Ļ€/2

Solution :

z = 2 - 2i 

Finding modulus :

z = āˆš22 + (-2)2

z = āˆš4 + 4

z = 2√2

Finding argument :

α  = tan-1|(-2)/2|

α  = tan-1|(-2)/2|

α  = tan-1|-1|

α  = Ļ€/4

Since (2, -2) lies in the fourth quadrant, Īø = -α

Then Īø = -Ļ€/4

2 - 2i = 2√2 (cos (-Ļ€/4) + i sin (-Ļ€/4))

i)

z is rotated by Ļ€/3 in counter clock wise direction, then

2 - 2i = 2√2 (cos (Ļ€/3 Ļ€/4) + i sin (Ļ€/3 Ļ€/4))

2√2 (cos (4Ļ€ - 3Ļ€)/12) + i sin (4Ļ€ - 3Ļ€)/12)

2√2 (cos (Ļ€/12) + i sin (Ļ€/12))

ii)

z is rotated by 2Ļ€/3 in counter clock wise direction, then

2 - 2i = 2√2 (cos (2Ļ€/3 Ļ€/4) + i sin (2Ļ€/3 Ļ€/4))

2√2 (cos (8Ļ€ - 3Ļ€)/12) + i sin (8Ļ€ - 3Ļ€)/12)

2√2 (cos (5Ļ€/12) + i sin (5Ļ€/12))

iii)

z is rotated by 3Ļ€/2 in counter clock wise direction, then

2 - 2i = 2√2 (cos (3Ļ€/2 Ļ€/4) + i sin (3Ļ€/2 Ļ€/4))

2√2 (cos (6Ļ€ - Ļ€)/4) + i sin (6Ļ€ - Ļ€)/4)

2√2 (cos (5Ļ€/4) + i sin (5Ļ€/4))

Question 6 :

If

[(1 + i)/(1 - i)]3[(1 - i)/(1 + i)]3 = x + iy

then find (x, y).

Solution :

[(1 + i)/(1 - i)]

To convert it as complex number, we have to multiply both numerator and denominator by the conjugate of the denominator.

[(1 + i)/(1 - i)] [(1 + i) / (1 + i)]

= (1 + i)(1 + i)/(1 - i)(1 + i)

= (12 + i + i + i2) / (12 - i2)

= (12 + 2i - 1) / (1+1)

= 2i/2

 [(1 + i)/(1 - i)] [(1 + i) / (1 + i)] = i

 [(1 + i)/(1 - i)] [(1 + i) / (1 + i)]= i3

= -i

 [(1 - i)/(1 + i)] =  [(1 - i)/(1 + i)] [(1 - i)/(1 - i)]

= (12 - 2i - 1) / (1+1)

= -2i/2

= -i

 [(1 - i)/(1 + i)]3 = (-i3)

= -(-i)

 [(1 - i)/(1 + i)]= i

[(1 + i)/(1 - i)][(1 - i)/(1 + i)]3 = x + iy

2i = x + iy

x = 0 and y = 2

Subscribe to our ā–¶ļø YouTube channel šŸ”“ for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Practice

    Dec 05, 25 04:04 AM

    satmathquestions1.png
    SAT Math Practice - Different Topics - Concept - Formulas - Example problems with step by step explanation

    Read More

  2. 10 Hard SAT Math Questions (Part - 37)

    Dec 03, 25 07:02 AM

    digitalsatmath411.png
    10 Hard SAT Math Questions (Part - 37)

    Read More

  3. Factorial Problems and Solutions

    Dec 02, 25 09:27 AM

    Factorial Problems and Solutions

    Read More