Simplify the following
(1) (3√2)2
(2) - 2√3 × 4√3
(3) 3√2 - √8
(4) 2√3 × 3√5
(5) (2√5)2
(6) 5√2 - 7√2
(7) (√3)4
(8) √3 × √5 × √15
(9) Write √48 in simplest radical form.
(10) Write √75 in simplest radical form.
(11) What is the set of all solutions to the equation
√(x + 18) = −2x?
(A) {−2, −6} (B) {−2} (C) {3}
(D) There are no solutions to the given equation.
(12)
3√8x3
If x < 0, which of the following is equivalent to the expression above ?
(A) -8x (B) -2x (C) 2x (D) 2x3
(13)
√x = x - 2
What is the greatest value of x that satisfies the above equation ?
(14)
If a = 3√7/4 and 4a = √3b, what is the value of b ?
(A) 4/3 (B) 7 (C) 21 (D) 63
(15) Simplify the radical expression 6/√3 ?
(16) 2√45 - 2√5
(17) -3√5 - √6 - √5
(18) √2(√6 - √10)
(19) √49a8x12
(20) √5xy √40x3y
(21) 3√162x5/3√3x2
Answers
(1) 18
(2) - 24
(3) √2
(4) 6√15
(5) 20
(6) - 2√2
(7) 9
(8) 15
(9) 4√3
(10) 5√3
(11) the values of x are -2 and 9/4
(12) 2x
(13) x = 4
(14) b = 21
(15) 2√3
(16) 4√5
(17) -4√5 - √6
(18) 2√3 - 2√5.
(19) 7 a4x6
(20) 10x2y √2
(21) 3 x 3√2
Expand and simplify
(1) 2√3(4-√3) (2) - √2(2-√2) (3) 2√3(√3-1) - 2√3 (4) (2√2-5)(1-√2) (5) (3+2√5)(2-√5) |
(6) (4-√2)(3+2√2) (7) (3-√7)2 (8) - (2-√5)2 (9) (2-√3)(2+√3) (10) (5-√3)(5+√3) |
(11) Write √1/7 in the form k√7
(12) Find x, y ∈ Q such that
(3+x√5) (√5–y) = -13+5√5
(13) Find p, q ∈ Q such that
(p+3√7) (5+q√7) = 9√7-53
(14) Solve for m, √(m - 1) + 5 = m - 2
Answers
(1) 8√3–6 (2) 2-2√2 (3) 6-4√3 (4) 7√2-9 (5) √5-4 (6) 8+5√2 (7) 16-6√7 |
(8) 4√5-9 (9) 1 (10) 22 (11) 1/7 (12) x = -2 and y = 1 (13) p =-63/5 and p = 2 q = 10/21 and q = -3 |
Answers :
(1) 1/2 (2) 3 (3) √6 (4) √(1/10)
(5) 1 (6) 10
Problem 1 :
Simplify the radical expression :
√169 + √121
Problem 2 :
Simplify the radical expression :
√20 + √320
Problem 3 :
Simplify the radical expression :
√117 - √52
Problem 4 :
Simplify the radical expression :
√243 - 5√12 + √27
Problem 5 :
Simplify the radical expression :
-√147 - √243(8√117) 2√52)
Problem 6 :
Simplify the radical expression :
(√13)(√26)
Problem 7 :
Simplify the radical expression :
(3√14)(√35)
Problem 8 :
Simplify the radical expression :
(8√117) ÷ (2√52)
Problem 9 :
Simplify the radical expression :
(8√3)2
Problem 10 :
Simplify the radical expression :
(√2)3 + √8
Problem 11 :
Simplify the radical expression :
4√(x4/16)
Problem 12 :
Simplify the radical expression :
3√(125p6q3)
Problem 13 :
If √(0.9 ⋅ 0.09 ⋅ x) = 0.9 ⋅ 0.9√3, then the value of x/3 is :
Problem 14 :
Find the value of (√1521/11) ⋅ (11/√196)
Problem 15 :
Find the value of [ √(7√7√7√7) ]
Problem 16 :
9 √x = √12 + √147, then x is
Problem 17 :
Find the value of √2304 + √23.04 + √0.2304
1) 24
2) 10√5
3) √13
4) 2√3
5) -16√3
6) 13√2
7) 21√10
8) 6
9) 192
10) 4√2
11) x / 2
12) 5p2q
Expand and simplify :
1) √2 (√5+√2) Solution
2) √3 (1-√3) Solution
3) √11 (2√11-1) Solution
4) 2√3 (√3-√5) Solution
5) (1+√2) (2+√2) Solution
6) (√3+2) (√3-1) Solution
7) (√5+2) (√5-3) Solution
8) (2√2+√3) (2√2-√3) Solution
9) (2+√3) (2+√3) Solution
10) (4-√2) (3+√2) Solution
11) (√7-√3) (√7+√3) Solution
12) (4-√2) (3-√2) Solution
13)
The distance d (in miles) that you can see to the horizon with your eye level h feet above the water is given by
d = √3h/2
How far can you see when your eye level is 5 feet above the water?
14) The ratio of the length to the width of a golden rectangle is ( 1 + √5 ) : 2. The dimensions of the face of the Parthenon in Greece form a golden rectangle. What is the height h of the Parthenon?
15) The electric current I (in amperes) an appliance uses is given by the formula
I = √(P/R)
where P is the power (in watts and R is the resistance (in ohms). Find the current and appliance uses when the power is 147 watts and the resistance is 5 ohms.
16) Find the area of the rectangle given below.
17) Find the area of the rectangle given below.
18) The period of the pendulum is the time required for it to make one complete swing back and forth. The formula of the period P of the pendulum is
P = 2π √(l/32)
where l is the length of pendulum in feet. If a pendulum in a clock tower is 8 feet long find the period. Use 3.14 for π.
1) √10+2.
2) √3-3
3) 22-√11
4) 6 - 2√15
5) 4 + 3√2
6) 1 + √3
7) -1 - √5
8) 5
9) 7+4√3
10) 10+√2
11) 4
12) 14-7√2
13) we can see about 2.73 feet.
14) 19.065 m
15) 5.42 amperes
16) √33
17) 8 + 2√15
18) 3.14 feet
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Jul 02, 25 07:06 AM
Jul 01, 25 10:27 AM
Jul 01, 25 07:31 AM