OPERATIONS WITH RADICALS WORKSHEET

Simplify the following

(1)  (3√2)2

(2)  - 2√3 × 4√3

(3)  3√2 - √8

(4)  2√3 × 3√5

(5)  (2√5)2

(6)  5√2 - 7√2

(7)  (√3)4

(8)   √3 × √5 × √15

(9)  Write √48 in simplest radical form.

(10)  Write √75 in simplest radical form.

(11)  What is the set of all solutions to the equation

√(x + 18) = −2x?

(A) {−2, −6}     (B) {−2}    (C) {3}

(D) There are no solutions to the given equation.

(12)  

3√8x3

If x < 0, which of the following is equivalent to the expression above ?

(A) -8x     (B) -2x   (C) 2x    (D) 2x3

(13)  

√x = x - 2

What is the greatest value of x that satisfies the above equation ?

(14)  

If a = 3√7/4 and 4a = √3b, what is the value of b ?

(A) 4/3     (B) 7   (C) 21    (D) 63

(15)  Simplify the radical expression 6/√3 ?

(16)  2√45 - 2√5

(17)  -3√5 - √6 - √5

(18)  √2(√6 - √10)

(19)  √49a8x12

(20)  √5xy √40x3y

(21)  3√162x5/3√3x2

Solution

Answers

(1)  18

(2)  - 24

(3)  √2

(4)  6√15

(5)  20

(6)  - 2√2

(7)   9

(8)  15

(9)  4√3

(10)  5√3

(11)   the values of x are -2 and 9/4

(12)  2x

(13) x = 4

(14)  b = 21

(15)  2√3

(16) 4√5

(17)  -4√5 - √6

(18)  2√3 - 2√5.

(19)   7 a4x6

(20)  10x2√2

(21)  3 x 3√2

Expand and simplify 

(1)  2√3(4-√3)

(2)  - √2(2-√2)

(3)  2√3(√3-1) - 2√3

(4)  (2√2-5)(1-√2)

(5)  (3+2√5)(2-√5)

(6)  (4-√2)(3+2√2)

(7)  (3-√7)2

(8)  - (2-√5)2

(9)  (2-√3)(2+√3)

(10)  (5-√3)(5+√3)

(11)  Write √1/7 in the form k√7

(12)  Find x, y ∈ Q such that

(3+x√5) (√5–y)  =  -13+5√5

(13)  Find p, q  ∈ Q such that

(p+3√7) (5+q√7)  =  9√7-53

(14)  Solve for m, √(m - 1) + 5 = m - 2

Solution

Answers

(1)  8√3–6

(2)  2-2√2

(3)  6-4√3

(4)  7√2-9

(5)  √5-4

(6)  8+5√2

(7)   16-6√7

(8)  4√5-9

(9)   1

(10)  22

(11)  1/7

(12)  x = -2 and y = 1

(13)  p =-63/5 and p = 2

q = 10/21 and q = -3

Dividing radicals

(1)  √5/√20

(2)  √27/√3

(3)  √18/√3

(4)  √3/√30

(5)  2√6/√24

(6)  5√75/√3

Solution

Answers :

(1)  1/2    (2)  3     (3) √6   (4) √(1/10)

(5)  1     (6)   10 

Problem 1 : 

Simplify the radical expression : 

√169 + √121

Solution

Problem 2 :

Simplify the radical expression : 

√20 + √320

Solution

Problem 3 : 

Simplify the radical expression : 

√117 - √52

Solution

Problem 4 :

Simplify the radical expression : 

√243 - 5√12 + √27

Solution

Problem 5 :

Simplify the radical expression : 

-√147 - √243(8√117) 2√52)

Solution

Problem 6 :

Simplify the radical expression : 

(√13)(√26)

Solution

Problem 7 :

Simplify the radical expression : 

(3√14)(√35)

Solution

Problem 8 :

Simplify the radical expression : 

(8√117) ÷ (2√52)

Solution

Problem 9 :

Simplify the radical expression : 

(8√3)2

Solution

Problem 10 :

Simplify the radical expression : 

(√2)3 + √8

Solution

Problem 11 :

Simplify the radical expression : 

4√(x4/16)

Solution

Problem 12 :

Simplify the radical expression : 

3√(125p6q3)

Solution

Problem 13 :

If √(0.9 ⋅ 0.09 ⋅ x) = 0.9 ⋅ 0.9√3, then the value of x/3 is :

Solution

Problem 14 :

Find the value of (√1521/11) ⋅ (11/√196)

Solution

Problem 15 :

Find the value of [ √(7√7√7√7) ]

Solution

Problem 16 :

√x = √12 + √147, then x is

Solution

Problem 17 :

Find the value of √2304 + √23.04 + √0.2304

Solution

Answer Key

1)  24

2)  10√5

3)  √13

4)  2√3

5)  -16√3

6)  13√2

7)  21√10

8)  6

9)  192

10)  4√2

11)  x / 2

12)  5p2q

Expand and simplify :

1)  √2 (√5+√2)           Solution

2)  √3 (1-√3)          Solution

3)  √11 (2√11-1)       Solution

4)  2√3 (√3-√5)       Solution

5)  (1+√2) (2+√2)       Solution

6)  (√3+2) (√3-1)       Solution

7) (√5+2) (√5-3)       Solution

8) (2√2+√3) (2√2-√3)       Solution

9)  (2+√3) (2+√3)       Solution

10)  (4-√2) (3+√2)       Solution

11)  (√7-√3) (√7+√3)       Solution

12)  (4-√2) (3-√2)       Solution

13)  

The distance d (in miles) that you can see to the horizon with your eye level h feet above the water is given by

d = √3h/2

How far can you see when your eye level is 5 feet above the water?

Solution

14)  The ratio of the length to the width of a golden rectangle is ( 1 + √5 ) : 2. The dimensions of the face of the Parthenon in Greece form a golden rectangle. What is the height h of the Parthenon?

distributive-property-of-surdq3.png

Solution

15)  The electric current I (in amperes) an appliance uses is given by the formula

I = √(P/R)

where P is the power (in watts and R is the resistance (in ohms). Find the current and appliance uses when the power is 147 watts and the resistance is 5 ohms.

Solution

16)  Find the area of the rectangle given below.

area-of-rectangle-with-radical-q1

Solution

17)  Find the area of the rectangle given below.

area-of-rectangle-with-radical-q2.png

Solution

18)  The period of the pendulum is the time required for it to make one complete swing back and forth. The formula of the period P of the pendulum is

P = 2π √(l/32)

distributive-property-of-surdq4.png

where l is the length of pendulum in feet. If a pendulum in a clock tower is 8 feet long find the period. Use 3.14 for π.

Solution

Answer Key

1)  √10+2.

2)  √3-3 

3)  22-√11

4)  6 - 2√15 

5)  4 + 3√2

6)  1 + √3

7) -1 - √5

8)  5

9)  7+4√3

10)  10+√2 

11)  4

12)  14-7√2

13)  we can see about 2.73 feet.

14)  19.065 m

15) 5.42 amperes

16) √33

17)  8 + 2√15

18)  3.14 feet

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 199)

    Jul 02, 25 07:06 AM

    digitalsatmath268.png
    Digital SAT Math Problems and Solutions (Part - 199)

    Read More

  2. Logarithm Questions and Answers Class 11

    Jul 01, 25 10:27 AM

    Logarithm Questions and Answers Class 11

    Read More

  3. Digital SAT Math Problems and Solutions (Part -198)

    Jul 01, 25 07:31 AM

    digitalsatmath267.png
    Digital SAT Math Problems and Solutions (Part -198)

    Read More