BINOMIAL EXPANSION PRACTICE WORKSHEET

Binomial expansion for (x + a)n is,

nc0xna+ nc1xn-1a+ nc2xn-2a+ .........+ ncnxn-na0(

If X is a set containing n elements, then we know that nCr is the number of subsets of X having exactly r elements. So by adding nCr for r = 0, 1, 2, . . . , n we get the number of subsets of X. So by using the above identity we see that a set of n elements has 2n subsets.

(1)  Expand (i) [2x2 − (3/x)]3        Solution

(ii)  (2x2 − 3√1 − x2)4  +  (2x2 + 3√1 − x2)Solution 

(2)  Compute (i)  1024   (ii)  994   (iii)  97    Solution

(3) Using binomial theorem, indicate which of the following two number is larger: (1.01)100000010000.

Solution

(4)  Find the coefficient of x15 in  (x2 + (1/x3))10  Solution

(5)  Find the coefficient of x6 and the coefficient of x2 in  (x2 - (1/x3))6   Solution 

(6)  Find the coefficient of x4 in the expansion of (1 + x3)50(x2 + 1/x)5.   Solution

(7)  Find the constant term of (2x3 - (1/3x2))Solution

(8)  Find the last two digits of the number 3600    Solution

(9)  If n is a positive integer, show that, 9n+1 − 8n − 9 is always divisible by 64.   Solution

(10)  If n is an odd positive integer, prove that the coefficients of the middle terms in the expansion of (x + y)n are equal.              Solution

(11)  If n is a positive integer and r is a non negative integer, prove that the coefficients of xr and xn−r in the expansion of (1 + x)n are equal             Solution

(12)  If a and b are distinct integers, prove that a − b is a factor of an − bn, whenever n is a positive integer. [Hint: write an = (a − b + b)n and expand]    Solution

(13)  In the binomial expansion of (a + b)n, the coefficients of the 4th and 13th terms are equal to each other, find n.      Solution

(14)  If the binomial coefficients of three consecutive terms in the expansion of (a + x)n are in the ratio 1 : 7 : 42, then find n.              Solution

(15)  In the binomial coefficients of (1 + x)n, the coefficients of the 5th, 6th and 7th terms are in AP. Find all values of n.    Solution

(16)  

Solution

Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. First Fundamental Theorem of Calculus - Part 1

    Apr 17, 24 11:27 PM

    First Fundamental Theorem of Calculus - Part 1

    Read More

  2. Polar Form of a Complex Number

    Apr 16, 24 09:28 AM

    polarform1.png
    Polar Form of a Complex Number

    Read More

  3. Conjugate of a Complex Number

    Apr 15, 24 11:17 PM

    conjugateofcomplexnumber1.png
    Conjugate of a Complex Number

    Read More