# HOW TO FIND EXPANSION USING BINOMIAL THEOREM

Binomial expansion for (x + a)n is,

nc0xna+ nc1xn-1a+ nc2xn-2a+ .........+ ncnxn-na0

Question 1 :

Expand (i) [2x2 − (3/x)]3

Solution :

x  =  2x2,  a  =  (-3/x),  n  =  3

= nc0xna+ nc1xn-1a+ nc2xn-2a+ ........+ ncnxn-na0

=  3c(2x2)3(-3/x)3c(2x2)2(-3/x)3c(2x2)1(-3/x)3c(2x2)0(-3/x)3

 3c0  =  1 3c1  =  3 3c2  =  3 3c3  =  1

=  (8x6) 3(4x4)(-3/x) 3(2x2)(9/x2) + 1 (1)(-27/x3)

=  8x6 - 36x3 + 54 - (27/x3)

Question 2 :

Expand (ii)  (2x2 − 31 − x2)+  (2x2 + 31 − x2)4

Solution :

Part 1 :

=  (2x2 − 31 − x2)4

x  =  2x2,  a  =  (-31 − x2),  n  =  4

= nc0xna+ nc1xn-1a+ nc2xn-2a+ ........+ ncnxn-na0

=  4c(2x2)4(-31 −x2)0

4c(2x2)3(-31−x2)4c(2x2)2(-31−x2)2

4c(2x2)1(-31 −x2)34c(2x2)0(-31 −x2)4

 4c0  =  1 4c1  =  4 4c2  =  6 4c3  =  4 4c4  =  1

=  16x8

4 (8x6)(-31−x2)+ 6 (4x4) (91−x2)2

4c(2x2)1(-271 −x2)34c(2x2)0(-31 −x2)4

=  16x8

- 96x1−x2 + 216x1−x- 216x2(1-x21−x

+ 81 (1 −x2) --------(1)

Part 2 :

=  (2x2 + 31 − x2)4

x  =  2x2,  a  =  (31 − x2),  n  =  4

= nc0xna+ nc1xn-1a+ nc2xn-2a+ ........+ ncnxn-na0

=  4c(2x2)4(31 −x2)0

4c(2x2)3(31−x2)4c(2x2)2(31−x2)2

4c(2x2)1(31 −x2)34c(2x2)0(31 −x2)4

=  16x8

+ 96x1−x2 + 216x1−x+ 216x2(1-x21−x

+ 81 (1 −x2) --------(2)

(1) + (2)  ==>  2 [16x+ 216x1−x+ 81 (1 −x2)2]

Hence the answer is 2 [16x+ 216x1−x+ 81 (1 −x2)2].

Question 3 :

Compute (i)  1024

Solution :

102=  (100 + 2)4

x  =  100, a  =  2, n  =  4

= nc0xna+ nc1xn-1a+ nc2xn-2a+ ........+ ncnxn-na0

=  4c(100)4(2)+ 4c1(100)3(2)+ 4c2(100)2(2)2 + 4c3(100)1(2)3 + 4c4(100)0(2)4

 4c0  =  1 4c1  =  4 4c2  =  6 4c3  =  4 4c4  =  1

=  1 (100000000)(1) + 4(1000000)(2) + 6(10000)(4) + 4(100)1(8) + 1(1)(16)

=  100000000 + 8000000 + 240000 + 3200 + 16

=  108243216

Hence the value of  1024 is 108243216.

Question 4 :

Compute (ii)  994

Solution :

994  =  (100 - 1)4

x  =  100, a  =  -1, n  =  4

= nc0xna+ nc1xn-1a+ nc2xn-2a+ ........+ ncnxn-na0

=  4c(100)4(-1)+ 4c1(100)3(-1)+ 4c2(100)2(-1)2 + 4c3(100)1(-1)3 + 4c4(100)0(-1)4

 4c0  =  1 4c1  =  4 4c2  =  6 4c3  =  4 4c4  =  1

=  1 (100000000)(1) + 4(1000000)(-1) + 6(10000)(1) + 4(100)1(-1) + 1(1)(1)

=  100000000 - 4000000 + 60000 - 400 + 1

=  96059601

Hence the value of  99is 96059601.

Question 5 :

Compute (iii)  97

Solution :

97  =  (10 - 1)7

x  =  10, a  =  -1, n  =  7

= nc0xna+ nc1xn-1a+ nc2xn-2a+ ........+ ncnxn-na0

=  7c(10)7(-1)+ 7c1(10)6(-1)+ 7c2(10)5(-1)2 + 7c3(10)4(-1)3 + 7c4(10)3(-1)4+ 7c5(10)2(-1)5+ 7c6(10)0(-1)6  + 7c7(10)1(-1)7

=  1(10000000) - 7(1000000) + 21(100000) - 35(10000) + 35(1000) - 21(100) + 7 - 1

=  10000000-7000000+2100000-350000+35000- 2100+70-1

=  4782969

Hence the value of  9is 4782969.

Apart from the stuff given in this section, if you need any other stuff in math, please use our google custom search here.

Kindly mail your feedback to v4formath@gmail.com

## Recent Articles

1. ### SAT Math Videos

May 22, 24 06:32 AM

SAT Math Videos (Part 1 - No Calculator)

2. ### Simplifying Algebraic Expressions with Fractional Coefficients

May 17, 24 08:12 AM

Simplifying Algebraic Expressions with Fractional Coefficients