HOW TO FIND THE CONSTANT TERM IN A BINOMIAL EXPANSION

Subscribe to our ā–¶ļø YouTube channel šŸ”“ for the latest videos, updates, and tips.

Example 1 :

Find the constant term of (2x3 - (1/3x2))5

Solution :

  =  (2x3 - (1/3x2))5

 General term  Tr+1  =  nCr x(n-r) ar

x  = 2x3, n  =  5, a  =  (-1/3x2)

Tr+1  =  5Cr (2x3)5-r (-1/3x2)r

  =  5Cr (2)5-r x15 - 3r (-1/3)x-2r

  =  5Cr (-1/3)(2)5-r x15 - 5r 

Constant term : 

15 - 5r  =  0

15  =  5 r

r  =  15/5  =  3

5C3 (-1/3)(2)5-3 x15 - 5(3) 

=  (-10/27) ā‹… 4  =  -40/27

So, the constant term is -40/27.

Example 2 :

Find the last two digits of the number 3600  

Solution :

3600   =  (32) 300 

  =  (9)300

  =  (10 - 1)300

  =  300C0 10300 āˆ’ 200C1 10299 + Ā· Ā· Ā·+ 300C298 102(āˆ’1)298 + 300C299 10(āˆ’1)299 + 300C300 (āˆ’1)300

= 102 [300C0 10298 āˆ’ 200C1 10297 + Ā· Ā· Ā·+ 300C298 102(āˆ’1)298] - 3000 + 1

Multiple of 10 ends with 0. By subtracting 3000 from multiple of 10, we will get the value ends with 0.

Again by adding it by 1, we will get the value which ends with 01.

Example 3 :

If n is a positive integer, show that, 9n+1 āˆ’ 8n āˆ’ 9 is always divisible by 64.

Solution :

(1 + x)n+1  =  (n+1)C0 (n+1)C0 x + (n+1)Cx2 + (n+1)Cx3 + ......(n+1)Cn+1 xn+1

(1+8)n+1

  =  (n+1)C(n+1)C18 + (n+1)C2(8)(n+1)C3(8)...... ....+  (n+1)Cn+1 8n+1

9n+1 āˆ’ 8n āˆ’ 9  =  [1 + (n+1)8 + 82 [(n+1)C2 (n+1)C38+(n+1)C482

...... ....+  (n+1)Cn+1 8n-1] - 8n - 9

9n+1 āˆ’ 8n āˆ’ 9  =  1 + 8n + 8 + [82 [(n+1)C2 (n+1)C38+(n+1)C482

...... ....+  (n+1)Cn+1 8n-1] - 8n - 9

9n+1 āˆ’ 8n āˆ’ 9  =  64 [An integer] 

9n+1 āˆ’ 8n āˆ’ 9 is divisible by 64.

Example 4 :

If n is an odd positive integer, prove that the coefficients of the middle terms in the expansion of (x + y)n are equal.

Solution :

If n is odd, then the two middle terms are T(nāˆ’1)/2+1 and T(n+1)/2+1

General term  Tr+1  =  nCr x(n-r) ar

x  =  x, n  =  n, a  =  y and r = (nāˆ’1)/2

nCx  =  T(nāˆ’1)/2+1  =  nC(nāˆ’1)/2 x(n-r) y(nāˆ’1)/ ----(1)

nCy  =  T(n+1)/2+1  =  nC(n+1)/2 x(n-r) y(n+1)/2  ----(2)

If nCx  =  nC ==> then x + y = n

Evidently if x + y = n then nCx  =  nCy

  =  (n-1)/2 + (n + 1)/2

 =  2n/2

=  n

So, the coefficients of middle terms are equal.

Example 5 :

If n is a positive integer and r is a non negative integer, prove that the coefficients of xr and xnāˆ’r in the expansion of (1 + x)n are equal

Solution :

General term  Tr+1  =  nCr x(n-r) ar

x = 1, a = x, n = n 

Tr+1  =  nCr 1(n-r) xr

 =  nCr x----(1)

Tr+1  =  nCn-r 1(n-(n-r)) x(n-r)

 =  nCn-r x(n-r) ----(2)

By comparing the coefficients of (1) and (2)

nC =  nCn-r

So, they are equal.

Subscribe to our ā–¶ļø YouTube channel šŸ”“ for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Quantitative Reasoning Questions and Answers

    Dec 14, 25 06:42 AM

    Quantitative Reasoning Questions and Answers

    Read More

  2. Specifying Units of Measure

    Dec 14, 25 06:38 AM

    Specifying Units of Measure

    Read More

  3. Coin Tossing Probability

    Dec 13, 25 10:11 AM

    Coin Tossing Probability - Concept - Sample Space - Formula - Solved Problems

    Read More