HOW TO SOLVE POLYNOMIAL EQUATION OF DEGREE 5

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

To solve a polynomial equation of degree 5, we have to factor the given polynomial as much as possible. After having factored, we can equate factors to zero and solve for the variable.  

Example 1 :

Solve :

6x5 - x4 - 43x3 + 43x2 + x - 6 = 0

Solution :

By trial and error, we can check the values 1 or -1 or 2 or -2...... as a zero for the above equation using synthetic division. 

When we check with the value 1, we get remainder zero. So, x = 1 is one of the zeros. 

Resulting equation :

6x4 + 5x3 - 38x2 + 5x + 6 = 0

Dividing both sides by x2.

6x4/x+ 5x3/x2 - 38x2/x2 + 5x/x2 + 6/x2 = 0

6x2 + 5x - 38 + 5/x + 6/x2 = 0

6(x2 + 1/x2) + 5 (x + 1/x) - 38 = 0 ----(1)

Let y = x + 1/x.

y2 = (x + 1/x)2

y= x2 + 2(x)(1/x) + (1/x)2

y= x2 + 2 + 1/x2

y- 2 = x2 + 1/x2

(1)----> 6(y2 - 2) + 5y - 38 = 0

6y2 - 12 + 5y - 38 = 0

6y2 + 5y - 50 = 0

6y2 - 15y + 20 y - 50 = 0

3y(2y - 5) + 10(2y - 5) = 0

(3y + 10)(2y - 5) = 0

3y + 10 = 0

y = -10/3

2y - 5 = 0

y = 5/2

When y  =  -10/3,

(x2 + 1)/x = -10/3

3(x2 + 1) = -10x

3x2 + 3 = -10x

3x2 + 10x + 3 = 0

(3x + 1)(x + 3) = 0

x = -1/3 and 3

When y = 5/2,

x + 1/x = y

(x2 + 1)/x = 5/2

2(x2 + 1) = 5 x

2x2 + 2 - 5x = 0

2x2 - 5x + 2 = 0

(2x - 1)(x - 2) = 0

x = 1/2 and 2

Therefore the five zeros are 1, -1/3, 3, 1/2 and 2.

Example 2 :

Solve :

8x5 - 22x4 - 55x3 + 55x2 + 22x - 8 = 0

Solution :

When we check with the value 1, we get remainder zero. So, x = 1 is one of the zeros. 

Resulting equation :

8x4 - 14x3 - 69x2 - 14x + 8 = 0

Dividing both sides by x2.

8x4/x- 14x3/x2 - 69x2/x2 - 14x/x2 + 8/x2 = 0

8x- 14x - 69 - 14/x + 8/x2 = 0

8(x2 + 1/x2) - 14(x + 1/x) - 69 = 0 ----(1)

Let y = x + 1/x. 

y2 = (x + 1/x)2

y= x2 + 2(x)(1/x) + (1/x)2

y= x2 + 2 + 1/x2

y- 2 = x2 + 1/x2

(1)----> 8(y2 - 2) - 14y - 69 = 0

8y2 - 16 - 14y - 69 = 0

8y2 - 14y - 85 = 0

(2y + 5)(4y - 17) = 0

2y + 5 = 0

y = -5/2

4y - 17 = 0

y = 17/4

When y = -5/2,

x + 1/x = y

(x2 + 1)/x = -5/2

2(x2 + 1) = -5x

2x2 + 2 + 5x = 0

2x2 + 5x + 2 = 0

2x2 + 4x + 1x + 2 = 0

2x(x + 2) + 1(x + 2) = 0

(2x + 1)(x + 2) = 0

x = -1/2 and -2

When y = 17/4,

x + 1/x = y

(x2 + 1)/x = 17/4

4(x2 + 1) = 17x

4x2 + 4 = 17x

4x2 - 17x + 4 = 0

(4x - 1)(x - 4) = 0

x = 1/4 and 4

Therefore the five zeros are  1, -1/2, -2, 1/4 and 4.

Example 3 :

Solve :

6x5 + 11x4 - 33x3 - 33x2 + 11x + 6 = 0

Solution :

When we check with the value -1, we get remainder zero. So, x = -1 is one of the zeros. 

Resulting equation :

6x4 + 5x3 - 38x2 + 5x + 6 = 0

Dividing both sides by x2.

6x4/x+ 5x3/x2 - 38x2/x2 + 5x/x2 + 6/x2 = 0

6x+ 5x - 38 + 5/x + 6/x2 = 0

6(x2 + 1/x2) + 5(x + 1/x) - 38 = 0 ----(1)

Let y = x + 1/x. 

y2 = (x + 1/x)2

y= x2 + 2(x)(1/x) + (1/x)2

y= x2 + 2 + 1/x2

y- 2 = x2 + 1/x2

(1)----> 6(y2 - 2) + 5y - 38 = 0

6y2 - 12 + 5y - 38 = 0

6y2 + 5y - 50 = 0

6y2 - 15y + 20y - 50 = 0

3y(2y - 5) + 10(2y - 5) = 0

(3y + 10)(2y - 5) = 0

3y + 10 = 0

y = -10/3

2y - 5 = 0

y = 5/2

When y = -10/3, 

x + 1/x = y

(x2 + 1)/x = -10/3

3(x2 + 1) = -10x

3x2 + 3 = -10x

3x2 + 10x + 3 = 0

3x2 + 9x + x + 3 = 0

3x(x + 3) + 1(x + 3) = 0

(x + 3)(3x + 1) = 0

x = -3 and -1/3

When y = 5/2, 

x + 1/x = y

(x2 + 1)/x = 5/2

2(x2 + 1) = 5x

2x2 + 2 - 5x = 0

2x2 - 5x + 2 = 0

2x2 - 4x - x + 2 = 0

2x(x - 2) - 1(x - 2) = 0

(2x - 1)(x - 2) = 0

x = 1/2 and 2

Therefore the five zeros are -1, -3, -1/3, 1/2 and 2.

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

onlinemath4all_official_badge.png

Recent Articles

  1. 10 Hard SAT Math Questions (Part - 41)

    Dec 24, 25 07:56 PM

    digitalsatmath423.png
    10 Hard SAT Math Questions (Part - 41)

    Read More

  2. ASTC Formula in Trigonometry

    Dec 23, 25 11:34 PM

    astc1
    ASTC Formula in Trigonometry - Concepts - Examples and Solved Problems

    Read More

  3. Coin Tossing Probability

    Dec 23, 25 11:29 PM

    Coin Tossing Probability - Concept - Sample Space - Formula - Solved Problems

    Read More