VERTICES OF A RIGHT TRIANGLE WORKSHEET

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Problem 1 :

Examine whether the given points  A (-3,-4) and B (2,6) and C(-6,10) forms a right triangle.

Problem 2 :

Examine whether the given points  P (7,1) and Q (-4,-1) and R (4,5) forms a right triangle.

Problem 3 :

Examine whether the given points  P (4,4) and Q (3,5) and R (-1,-1) forms a right triangle.

Problem 4 :

Examine whether the given points  A (2,0) and B (-2,3) and C (-2,-5) forms a right triangle.

Problem 5 :

Examine whether the given points  A (0,0) and B (5,0) and C (0,6) forms a right triangle.

Problem 6 :

Examine whether the given points  P (4,4) and Q (3,5) and R (-1,-1) forms a right triangle.

Solutions

Problem 1 :

Examine whether the given points  A (-3,-4) and B (2,6) and C(-6,10) forms a right triangle.

Solution :

Distance Between Two Points (x ₁, y₁) and (x₂ , y₂)

√(x₂ - x₁) ² + (y₂ - y₁) ²


The three points are  A (-3,-4) and B (2,6) and C(-6,10)

Distance between the points A and B

√(x₂ - x₁)² + (y₂ - y₁)²

Here x₁ = -3, y₁ = -4, x₂ = 2  and  y₂ = 6.

 √(2-(-3))² + (6-(-4))²

=   √(2+3)² + (6+4)²

=  √5² + 10²

=   √25 + 100 

=   √125 units

Distance between the points B and C

√(x₂ - x₁)² + (y₂ - y₁)²

Here x₁ = 2, y₁ = 6, x₂ = -6  and  y₂ = 10

=    √(-6-2)² + (10-6)²

=    √(-8)² + (4)²

=    √64 + 16

=    √80 units

Distance between the points C and A

√(x₂ - x₁)² + (y₂ - y₁)²

Here x₁ = -6, y₁ = 10, x₂ = -3  and  y₂ = -4.

=    √(-3-(-6))² + (-4-10)²

=    √(-3+6)² + (-14)²

=    √3² + (-14)²

=    √9 + 196 

=    √205 units

AB = √125 units

BC = √80 units

CA = √205 units

(CA)² = (AB)² + (BC)²

(√205)²  = (√125)² + (√80)²

205 = 125 + 80

205 = 205

Therefore A,B and C forms a right triangle. 

Problem 2 :

Examine whether the given points  P (7,1) and Q (-4,-1) and R (4,5) forms a right triangle.

Solution :

Distance Between Two Points (x ₁, y₁) and (x₂ , y₂)

√(x₂ - x₁)² + (y₂ - y₁)²


The three points are  P (7,1) and Q (-4,-1) and R (4,5)

Distance between the points P and Q

√(x₂ - x₁)² + (y₂ - y₁)²

Here x₁ = 7, y₁ = 1, x₂ = -4  and  y₂ = -1.

=  √(-4-7)² + (-1-1)²

=   √(-11)² + (-2)²

=   √121 + 4

=   √125 units

Distance between the points Q and R

√(x₂ - x₁)² + (y₂ - y₁)²

Here x₁ = -4, y₁ = -1, x₂ = 4  and  y₂ = 5.

=   √(4-(-4))² + (5-(-1))²

=    √(4+4)² + (5+1)²

=    √8² + 6²

=    √64 + 36

=    √100 units

Distance between the points R and P

√(x₂ - x₁)² + (y₂ - y₁)²

Here x₁ = 4, y₁ = 5, x₂ = 7  and  y₂ = 1.

=  √(7-4)² + (1-5)²

=    √(3)² + (-4)²

=    √9 + 16 

=    √25 units

PQ = √125 units

QR = √100 units

RP = √25 units

(PQ)² = (QR)² + (RP)²

(√125)²  = (√100)² + (√25)²

125 = 100 + 25

125 = 125

Hence, the given points  P,Q and R forms a right triangle.

Problem 3 :

Examine whether the given points  P (4,4) and Q (3,5) and R (-1,-1) forms a right triangle.

Solution :

Distance Between Two Points (x ₁, y₁) and (x₂ , y₂)

√(x₂ - x₁)² + (y₂ - y₁)²


The three points are  P (4,4) and Q (3,5) and R (-1,-1)

Distance between the points P and Q

√(x₂ - x₁)² + (y₂ - y₁)²

Here x₁ = 4, y₁ = 4, x₂ = 3 and y₂ = 5.

 √(3-4)² + (5-4)²

=  √(-1)² + (1)²

=  √1 + 1

=  √2 units

Distance between the points Q and R

√(x₂ - x₁)² + (y₂ - y₁)²

Here x₁ = 3, y₁ = 5, x₂ = -1  and  y₂ = -1.

 √(-1-3)² + (-1-5)²

=   √(-4)² + (-6)²

 √16 + 36

=  √52 units

Distance between the points R and P

√(x₂ - x₁)² + (y₂ - y₁)²

Here x₁ = -1, y₁ = -1, x₂ = 4  and  y₂ = 4.

=  √(4-(-1))² + (4-(-1))²

=   √(4+1)² + (4+1)²

=   √5² + (5)²

=  √25 + 25 

=  √50 units

PQ = √2 units

QR = √52 units

RP = √50 units

(QR)² = (PQ)² + (RP)²

(√52)²  = (√2)² + (√50)²

52 = 2 + 50

52 = 52

Hence, the given points P,Q and R forms a right triangle.

Problem 4 :

Examine whether the given points  A (2,0) and B (-2,3) and C (-2,-5) forms a right triangle.

Solution :

Distance Between Two Points (x ₁, y₁) and (x₂ , y₂)

√(x₂ - x₁)² + (y₂ - y₁)²


The three points are  A (2,0) and B (-2,3) and C (-2,-5)

Distance between the points A and B

√(x₂ - x₁)² + (y₂ - y₁)²

Here x₁ = 2, y₁ = 0, x₂ = -2  and  y₂ = 3.

=  √(-2-2))² + (3-0)²

=    √(-4)² + (3)²

=   √16 + 9

=   √25  units

Distance between the points B and C

√(x₂ - x₁)² + (y₂ - y₁)²

Here x₁ = -2, y₁ = 3, x₂ = -2  and  y₂ = -5.

=  √(-2-(-2))² + (-5-3)²

=    √(-2+2)² + (-8)²

=    √0² + 64

=    √64 units

Distance between the points C and A

√(x₂ - x₁)² + (y₂ - y₁)²

Here x₁ = -2, y₁ = -5, x₂ = 2  and  y₂ = 0.

=  √(2-(-2))² + (0-(-5))²

=   √(2+2)² + (0+5)²

=    √4² + (5)²

=    √16 + 25 

=    √41 units

AB = √25 units

BC = √64 units

CA = √41 units

(BC)² = (AB)² + (CA)²

(√64)²  = (√25)² + (√41)²

64 = 25 + 41

64 ≠ 66

Hence, the given points A,B and C will not form a right triangle.

Problem 5 :

Examine whether the given points  A (0,0) and B (5,0) and C (0,6) forms a right triangle.

Solution :

To show that the given points forms a right triangle we need to find the distance between three points. The sum of squares of two sides is equal to the square of remaining side.

Distance Between Two Points (x ₁, y₁) and (x₂ , y₂)

√(x₂ - x₁)² + (y₂ - y₁)²

The three points are  A (0,0) and B (5,0) and C (0,6)

Distance between the points A and B

√(x₂ - x₁)² + (y₂ - y₁)²

Here x₁ = 0, y₁ = 0, x₂ = 5  and  y₂ = 0.

=    √(5-0)² + (0-0)²

=    √(5)² + (0)²

=    √5² + 0²

=    √25 + 0 

 =    √25 units

Distance between the points B and C

√(x₂ - x₁)² + (y₂ - y₁)²

Here x₁ = 5, y₁ = 0, x₂ = 0  and  y₂ = 6.

=    √(0-5)² + (6-0)²

=    √(-5)² + (6)²

=    √25 + 36

=    √61 units

Distance between the points C and A

√(x₂ - x₁)² + (y₂ - y₁)²

Here x₁ = 0, y₁ = 6, x₂ = 0  and  y₂ = 0.

=    √(0-0)² + (0-6)²

=    √(0)² + (-6)²

=    √0 + 36

=    √36 units

AB = √25 units

BC = √61 units

CA = √36 units

(BC)² = (AB)² + (CA)²

(√61)²  = (√25)² + (√36)²

61 = 25 + 36

61 = 61

Hence, the given points A,B and C forms a right triangle.

Problem 6 :

Examine whether the given points  P (4,4) and Q (3,5) and R (-1,-1) forms a right triangle.

Solution :

To show that the given points forms a right triangle we need to find the distance between three points. The sum of squares of two sides is equal to the square of remaining side.

Distance Between Two Points (x ₁, y₁) and (x₂ , y₂)

√(x₂ - x₁)² + (y₂ - y₁)²


The three points are  P (4,4) and Q (3,5) and R (-1,-1)

Distance between the points P and Q

√(x₂ - x₁)² + (y₂ - y₁)²

Here x₁ = 4, y₁ = 4, x₂ = 3  and  y₂ = 5

=    √(3-4)² + (5-4)²

=    √(-1)² + (1)²

=    √1 + 1

=    √2 units

Distance between the points Q and R

√(x₂ - x₁)² + (y₂ - y₁)²

Here x₁ = 3, y₁ = 5, x₂ = -1  and  y₂ = -1.

=    √(-1-3)² + (-1-5)²

=    √(-4)² + (-6)²

=    √16 + 36

=    √52 units

Distance between the points R and P

√(x₂ - x₁)² + (y₂ - y₁)²

Here x₁ = -1, y₁ = -1, x₂ = 4  and  y₂ = 4.

=    √(4-(-1))² + (4-(-1))²

=    √(4+1)² + (4+1)²

=    √5² + (5)²

=    √25 + 25 

=    √50 units

PQ = √2 units

QR = √52 units

RP = √50 units

(QR)² = (PQ)² + (RP)²

(√52)²  = (√2)² + (√50)²

52 = 2 + 50

52 = 52

Hence, the given points P,Q and R forms a right triangle.

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

onlinemath4all_official_badge.png

Recent Articles

  1. 10 Hard SAT Math Questions (Part - 43)

    Jan 04, 26 01:38 AM

    10 Hard SAT Math Questions (Part - 43)

    Read More

  2. 90 Degree Clockwise Rotation

    Jan 01, 26 06:58 AM

    90degreeclockwiserotation1.png
    90 Degree Clockwise Rotation - Rule - Examples with step by step explanation

    Read More

  3. US Common Core K-12 Curriculum Algebra Solving Systems of Equations

    Jan 01, 26 04:51 AM

    US Common Core K-12 Curriculum - Algebra : Solving Systems of Linear Equations

    Read More