# TRANSITIVE RELATION

Let us consider the set A as given below.

A  =  {a, b, c}

Let R be a transitive relation defined on the set A.

Then,

R  =  { (a, b), (b, c), (a, c)}

That is,

If "a" is related to "b" and "b" is related to "c", then "a" has to be related to "c".

In simple terms,

a R b, b R c -----> a R c

Example :

Let A  =  { 1, 2, 3 } and R be a relation defined on  set A as "is less than" and R  = {(1, 2), (2, 3), (1, 3)} Verify R is transitive.

Solution :

From the given set A, let

a  =  1

b  =  2

c  =  3

Then, we have

(a, b)  =  (1, 2) -----> 1 is less than 2

(b, c)  =  (2, 3) -----> 2 is less than 3

(a, c)  =  (1, 3) -----> 1 is less than 3

That is, if 1 is less than 2 and 2 is less than 3, then 1 is less than 3.

More clearly,

1R2, 2R3 -----> 1R3

Clearly, the above points prove that R is transitive.

Important Note :

For a particular ordered pair in R, if we have (a, b) and we don't have (b, c), then we don't have to check transitive for that ordered pair.

So, we have to check transitive, only if we find both (a, b) and (b, c) in R.

## Practice Problems

Problem 1 :

Let A  =  {1, 2, 3} and R be a relation defined on set A as

R  = {(1, 1), (2, 2), (3, 3), (1, 2)}

Verify R is transitive.

Solution :

To verify whether R is transitive, we have to check the condition given below for each ordered pair in R.

That is,

(a, b),  (b, c) -----> (a, c)

Let's check the above condition for each ordered pair in R. From the table above, it is clear that R is transitive.

Note :

For the two ordered pairs (2, 2) and (3, 3), we don't find the pair (b, c). So, we don't have to check the condition for those ordered pairs.

Problem 2 :

Let A  =  {1, 2, 3} and R be a relation defined on set A as

R  = {(1, 1), (2, 2), (1, 2), (2, 1)}

Verify R is transitive.

Solution :

To verify whether R is transitive, we have to check the condition given below for each ordered pair in R.

That is,

(a, b),  (b, c) -----> (a, c)

Let's check the above condition for each ordered pair in R. From the table above, it is clear that R is transitive.

Problem 3 :

Let A  =  {1, 2, 3} and R be a relation defined on set A as

R  = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (2, 3), (3, 2)}

Verify R is transitive.

Solution :

To verify whether R is transitive, we have to check the condition given below for each ordered pair in R.

That is,

(a, b),  (b, c) -----> (a, c)

Let's check the above condition for each ordered pair in R. In the table above, for the ordered pair (1, 2), we have both (a, b) and (b, c). But, we don't find (a, c).

That is, we have the ordered pairs (1, 2) and (2, 3) in R. But, we don't have the ordered pair (1, 3) in R.

So, we stop the process and conclude that R is not transitive.

## Related Topics

Reflexive relation

Symmetric relation

Equivalence relation

Identity relation

Inverse relation

Difference between reflexive and identity relation Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.

If you have any feedback about our math content, please mail us :

v4formath@gmail.com

You can also visit the following web pages on different stuff in math.

WORD PROBLEMS

Word problems on simple equations

Word problems on linear equations

Algebra word problems

Word problems on trains

Area and perimeter word problems

Word problems on direct variation and inverse variation

Word problems on unit price

Word problems on unit rate

Word problems on comparing rates

Converting customary units word problems

Converting metric units word problems

Word problems on simple interest

Word problems on compound interest

Word problems on types of angles

Complementary and supplementary angles word problems

Double facts word problems

Trigonometry word problems

Percentage word problems

Profit and loss word problems

Markup and markdown word problems

Decimal word problems

Word problems on fractions

Word problems on mixed fractrions

One step equation word problems

Linear inequalities word problems

Ratio and proportion word problems

Time and work word problems

Word problems on sets and venn diagrams

Word problems on ages

Pythagorean theorem word problems

Percent of a number word problems

Word problems on constant speed

Word problems on average speed

Word problems on sum of the angles of a triangle is 180 degree

OTHER TOPICS

Profit and loss shortcuts

Percentage shortcuts

Times table shortcuts

Time, speed and distance shortcuts

Ratio and proportion shortcuts

Domain and range of rational functions

Domain and range of rational functions with holes

Graphing rational functions

Graphing rational functions with holes

Converting repeating decimals in to fractions

Decimal representation of rational numbers

Finding square root using long division

L.C.M method to solve time and work problems

Translating the word problems in to algebraic expressions

Remainder when 2 power 256 is divided by 17

Remainder when 17 power 23 is divided by 16

Sum of all three digit numbers divisible by 6

Sum of all three digit numbers divisible by 7

Sum of all three digit numbers divisible by 8

Sum of all three digit numbers formed using 1, 3, 4

Sum of all three four digit numbers formed with non zero digits

Sum of all three four digit numbers formed using 0, 1, 2, 3

Sum of all three four digit numbers formed using 1, 2, 5, 6

Featured Categories

Math Word Problems

SAT Math Worksheet

P-SAT Preparation

Math Calculators

Quantitative Aptitude

Transformations

Algebraic Identities

Trig. Identities

SOHCAHTOA

Multiplication Tricks

PEMDAS Rule

Types of Angles

Aptitude Test 