INVERSE RELATION

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Let R be a relation defined on the set A such that

R  =  {(a, b) / a, b ∈ A}

Then, the inverse relation R-1 on A is given by 

R-1  =  {(b, a) / (a, b) ∈ R}

That is, in the given relation, if "a" is related to "b", then "b" will be related to "a" in the inverse relation .

Example : 

Let R be a relation defined as given below.  

R  =  {(1, 2), (2, 2), (3, 1), (3, 2)}

Find R-1.

Solution :

R-1 =  {(2, 1), (2, 2), (1, 3), (2, 3)}

Domain and Range of Inverse Relation

Let us consider the relation R such that 

R  =  {(1, 1), (2, 3), (3, 4), (2, 7)}

Then, the domain and range of R : 

Domain (R)  =  {1, 2, 3}

Range (R)  =  {1, 3, 4, 7}

Find inverse relation R-1 :

R-1  =  {(1, 1), (3, 2), (4, 3), (7, 2)}

Then, the domain and range of R-1

Domain (R-1)  =  {1, 3, 4, 7}

Range (R-1)  =  {1, 2, 3}

Clearly,

Domain (R-1)  =  Range (R)

Range (R-1)  =  Domain (R)

Related Topics

Reflexive relation

Symmetric relation

Transitive relation

Equivalence relation

Identity relation

Difference between reflexive and identity relation

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

onlinemath4all_official_badge.png

Recent Articles

  1. GMAT Quantitative Reasoning Questions and Answers

    Dec 27, 25 09:33 PM

    GMAT Quantitative Reasoning Questions and Answers

    Read More

  2. 10 Hard SAT Math Questions (Part - 40)

    Dec 25, 25 08:30 AM

    digitalsatmath422.png
    10 Hard SAT Math Questions (Part - 40)

    Read More

  3. 10 Hard SAT Math Questions (Part - 41)

    Dec 24, 25 07:58 PM

    digitalsatmath423.png
    10 Hard SAT Math Questions (Part - 41)

    Read More