EQUIVALENCE RELATION

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

As we have rules for reflexive, symmetric and transitive relations, we don't have any specific rule for equivalence relation.

Let R be a relation defined on a set A.

If the three relations reflexive, symmetric and transitive hold in R, then R is equivalence relation.

To verify equivalence, we have to check whether the three relations reflexive, symmetric and transitive hold.

To know the three relations reflexive, symmetric and transitive in detail, please click on the following links.

Reflexive relation

Symmetric relation

Transitive relation

Example :

Let A  =  {1, 2, 3} and R be a relation defined on set A as

R  = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)}

Verify R is equivalence.

Solution :

We have to check whether the three relations reflexive, symmetric and transitive hold in R.

Reflexive : 

In the set A, we find three elements. They are 1, 2 and 3.

When we look at the ordered pairs of R, we find the following associations. 

(1, 1) -----> 1 is related to 1

(2, 2) -----> 2 is related to 2

(3, 3) -----> 3 is related to 3

In R, it is clear that every element of A is related to itself. 

So, R is reflexive relation. 

Symmetric :

To verify whether R is transitive, we have to check the condition given below for each ordered pair in R.

That is, 

(a, b) -----> (b, a)

Let's check the above condition for each ordered pair in R. 

From the table above, it is clear that R is symmetric.

Transitive :

To verify whether R is transitive, we have to check the condition given below for each ordered pair in R.

That is, 

(a, b),  (b, c) -----> (a, c)

Let's check the above condition for each ordered pair in R. 

From the table above, it is clear that R is transitive. 

Note : 

For the ordered pair (3, 3), we don't find the ordered pair (b, c). So, we don't have to check the condition of transitive relation for that ordered pair.  

Conclusion :

For the given relation R, all the three relations reflexive, symmetric and transitive hold. 

Hence, R is equivalence. 

Related Topics

Reflexive relation

Symmetric relation

Transitive relation

Identity relation

Inverse relation

Difference between reflexive and identity relation

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. 10 Hard SAT Math Questions (Part - 38)

    Dec 08, 25 12:12 AM

    digitalsatmath416.png
    10 Hard SAT Math Questions (Part - 38)

    Read More

  2. SAT Math Practice

    Dec 05, 25 04:04 AM

    satmathquestions1.png
    SAT Math Practice - Different Topics - Concept - Formulas - Example problems with step by step explanation

    Read More

  3. 10 Hard SAT Math Questions (Part - 37)

    Dec 03, 25 07:02 AM

    digitalsatmath411.png
    10 Hard SAT Math Questions (Part - 37)

    Read More