SUM OF ARITHMETIC GEOMETRIC AND ARITHMETICO GEOMETRIC SEQUENCES

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Here we are going to see some practice questions on finding sum of arithmetic geometric and arithmetico geometric sequences.

Question 1 :

Find the sum of the first 20-terms of the arithmetic progression having the sum of first 10 terms as 52 and the sum of the first 15 terms as 77

Solution :


S15  =  77

Sn  =  (n/2)[2a + (n - 1)d]

S10  =  52

S10 = 52 = (10/2)[2a + 9d]

52  =  10a + 45d  ---------(1)

S15  =  77

S15 = 77 = (15/2)[2a + 14d]

77  =  15a + 105d  ---------(2)

(1) ⋅ 3 ==> 30a + 135 d  =  156

(2) ⋅ 2 ==> 30a + 210 d  =  154

                 (-)     (-)         (-)

              -----------------------

                        -75d  =  2  ==> d  =  -2/75

By applying the value of d in (1), we get

10 a + 45 (-2/75)  =  52

10a - 6/5  =  52

10a  =  52 + (6/5)  ==> 10a  =  266/5

 a  =  266/50  ==>  133/25

Sum of arithmetic series :

Sn  =  (n/2)[2a + (n - 1)d]

S20  =  (20/2)[2(133/25) + (20 - 1)(-2/75)]

  =  10[266/25 + 19(-2/75)]

  =  10[(266/25) - (38/75)]

  =  10[(798 - 38)/75]

  S20  =  10(760/75)  =  10(152/15)  ==> 304/3

Question 2 :

Find the sum up to the 17th term of the series

(13/1 ) + (13 + 23) / (1 + 3) + (13 + 23 + 33) / (1 + 3 + 5) + · · ·

Solution :

First let us find the nth term of the sequence

In the numerator, we have sum of cubes of natural numbers.

In the denominator, we have sum of odd numbers

nth term  tn = (13+23+33+ .............+ n3)/(1+3+5+ ...+ (2n - 1))

t =  [n(n+1)/2]2/n2

  =  (n+1)2/4

  =  (1/4)[n2 + 2n + 1]

Let Sn denote the sum of n terms of the given series. Then

n = 17

  =  17/24 (578 + 153 + 13)

  =  (17/24)(744)

  =  17 (31)  =  527

Hence the sum of 17 terms of the given sequence is 527.

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

Recent Articles

  1. AP Calculus BC Problems with Solutions

    Dec 20, 25 10:51 AM

    AP Calculus BC Problems with Solutions

    Read More

  2. AP Precalculus Problems and Solutions (Part - 1)

    Dec 20, 25 10:49 AM

    AP Precalculus Problems and Solutions (Part - 1)

    Read More

  3. AP Calculus AB Problems with Solutions (Part - 1)

    Dec 20, 25 10:49 AM

    apcalculusab1.png
    AP Calculus AB Problems with Solutions (Part - 1)

    Read More