SIMPLIFYING POLYNOMIAL EXPRESSIONS IN FRACTIONS

Simplifying polynomial expressions is nothing but expressing the the rational expression to lowest term or simplest form.

The following steps ill be useful to simple rational expressions. 

Step 1 :

Factor both numerator and denominator, if it is possible.

Step 2 :

Identify the common factors in both numerator and denominator. 

Step 3 :

Remove the common factors found in both numerator and denominator.

Example 1 :

[(x- 2x)/(x + 2)] ⋅ [(3x + 6)/(x - 2)]

Solution :

Let f(x) = [(x- 2x)/(x + 2)] ⋅ [(3x + 6)/(x - 2)]

f(x) = [(x- 2x)/(x + 2)] ⋅ [(3x + 6)/(x - 2)]

f(x) = [x(x - 2)/(x + 2)] ⋅ [3(x + 2)/(x - 2)]

f(x) = 3x

So, the value of f(x) is 3x.

Example 2 :

[(x- 81)/(x- 4)]  [(x+ 6x + 8)/(x- 5x - 36)]

Solution :

Let f(x) = [(x- 81)/(x- 4)]  [(x+ 6x + 8)/(x- 5x - 36)]

x- 81 = x2- 92  ==> (x + 9)(x - 9)

x- 4 = x-  22  ==> (x + 2)(x - 2)

x+ 6x + 8 = (x + 2)(x + 4)

x- 5x - 36 = (x - 9)(x + 4)

f(x) = [(x + 9)( x - 9)/(x + 2)(x - 2)] ⋅ [(x + 2)(x + 4)/(x - 9)(x + 4)]

By simplifying (x + 9)/(x - 2)

So, the value of f(x) is (x + 9)/(x - 2).

Example 3 :

[(x- 3x - 10)/(x- x - 20)]  [(x- 2x + 4)/(x+ 8)]

Solution :

Let f(x) = [(x- 3x - 10)/(x- x - 20)]  [(x2-2x + 4)/(x+ 8)]

x- 3x - 10 = (x - 5)(x + 2)

x- x - 20 = (x - 5)(x + 4)

a+ b= (a + b)(a- ab + b2)

x+ 23 = (x + 2)(x- 2x + 4)

By applying the factors in f(x), we get

 =  [(x - 5)(x + 2)/(x - 5)(x + 4) [(x- 2x + 4)/(x + 2)(x2-2x + 4)]

=  1/(x + 4)

So, the value of f(x) is 1/(x + 4)

Example 4 :

[(x- 16)/(x2 - 3x + 2)]  [(x- 4)/(x+ 64)]  

[(x- 4x + 16)/(x- 2x - 8)]

Solution :

Let f(x) = [(x- 16)/(x2 - 3x + 2)]  [(x- 4)/(x+ 64)]  

[(x- 4x + 16)/(x- 2x - 8)]e

x- 16 = x- 4 ==> (x + 4)(x - 4)

x- 3x + 2 = (x - 1)(x - 2)

x- 4 = x- 22  ==> (x + 2)(x - 2)

x+ 64  = x+ 4 ==> (x + 4)(x- 4x + 16) 

x- 2x - 8 = (x - 4)(x + 2)

=  [(x+4)(x-4)/(x-1)(x-2)][(x+2)(x-2)/(x+4)(x2-4x+16)]

[(x2-4x+16)/(x-4)(x+2)]

f(x)  =  1/(x-1)

So, the value of f(x) is 1/(x-1).

Example 5 :

[(3x2+2x-1)/(x2-x-2)] [(2x2-3x-2)/(3x2+5x-2)]

Solution :

Let f(x)  =  [(3x2+2x-1)/(x2-x-2)]

 [(2x2-3x-2)/(3x2+5x-2)]

(3x2+2x-1)  =  (3x-1) (x+1)

(x2-x-2)  =  (x-2) (x+1)

(2x2-3x-2)  =  (2x+1) (x-2)

(3x2+5x-2) =   (2x-1) (x+2)

By applying the factors in f(x), we get

=  [(3x-1)(x+1)/(x-2) (x+1)][(2x+1) (x-2)/(2x-1) (x+2)]

=  (2x+1)/(x+2)

So, the value of f(x) is (2x+1)/(x+2).

Example 6 :

[(2x-1)/(x2+2x+4)] [(x4-8x)/(2x2+5x-3)] 

[(x+3)/(x2-2x)]

Solution :

Let f(x)  =  [(2x-1)/(x2+2x+4)] [(x4-8x)/(2x2+5x-3)] 

[(x+3)/(x2-2x)]

x4-8x  =  x(x3-23)

x4-8x  =  x(x-2)(x2+2x+4)

2x2+5x-3  =  (2x-1)(x+3)

x2-2x  =  x(x-2)

By applying the factors in f(x), we get

=  [(2x-1)/(x2+2x+4)][x(x-2)(x2+2x+4)/(2x-1)(x+3)] 

[(x+3)/x(x-2)]

=  1

So, the value of f(x) is 1.

Example 7 :

[(a+b)/(a-b)] [(a3-b3)/(a3+b3)]

Solution :

Let f(x)  =  [(a+b)/(a-b)] [(a3-b3)/(a3+b3)]

=  [(a+b)/(a-b)][(a-b)(a2+ab+b2)/(a+b) (a2-ab+b2)]

=  (a2+ab+b2)/(a2-ab+b2)

So, the value of f(x) is (a2+ab+b2)/(a2-ab+b2).

Example 8 :

[(x2-9y2)/(3x-3y)]  [(x2-y2)/(x2+4xy+3y2)]

Solution :

Let f(x)  =  [(x2-9y2)/(3x-3y)]  [(x2-y2)/(x2+4xy+3y2)]

x2-9y=  x2-(3y)2

x2-9y2  =  (x+3y)(x-3y)

3x-3y  =  3(x-y)

x2-y=  (x+y)(x-y)

x2+4xy+3y=  (x+3y)(x+y)

By applying the factors in f(x), we get

=  [(x+3y)(x-3y)/3(x-y)]⋅[(x+y)(x-y)/(x+3y)(x+y)]

By simplifying, we get

=  (x-3y)/3

So, the value of f(x) is (x-3y)/3.

Example 9 :

[(x2-4x-12)/(x2-3x-18)]  [(x2-2x-3)/(x2+3x+2)]

Solution :

Let f(x)  =  [(x2-4x-12)/(x2-3x-18)] 

 [(x2-2x-3)/(x2+3x+2)]

x- 4x - 12 = (x - 6)(x + 2)

x- 3x - 18 = (x - 6)(x + 3)

x- 2x - 3 = (x - 3)(x + 1)

x+ 3x + 2 = (x + 1)(x + 2)

f(x) = [(x - 6)(x + 2)/(x - 6)(x + 3)]⋅[(x - 3)(x + 1)/(x + 1)(x + 2)]

f(x) = (x - 3)/(x + 3)

So, the value of f(x) is (x - 3)/(x + 3).

Example 10 :

[(x2-3x-10)/(x2-x-20)][(x2-4x+16)/(x3+64)]

Solution :

Let f(x)  =  [(- 3x - 10)/(x- x - 20)][(x2- 4x + 16)/(x+ 64)]

x- 3x - 10 = (x - 5)(x + 2)

x- x - 20 = (x - 5)(x + 4)

x+ 43 = (x + 4)(x- 4x + 16)

By applying the factors in f(x), we get

f(x) = [(x - 5)(x + 2)/(x - 5)(x + 4)][(x- 4x + 16)/(x + 4)(x- 4x + 16)]

f(x) = (x + 2)/(x + 4)2

So, the value of f(x) is (x + 2)/(x + 4)2.

Example 11 :

 [(x2-16)/(x-2)] [(x2-4)/(x3+64)]

Solution :

Let f(x)  =  [(x2-16)/(x-2)] [(x2-4)/(x3+64)]

x2-16 = x- 42  ==> (x+4)(x-4)

x2-4  =  x- 22  ==> (x + 2)(x - 2)

x3+64  =  x+ 43 ==> (x + 4)(x- 4x + 16)

f(x) = [(x + 4)(x - 4)/(x - 2)] [(x + 2)(x - 2)/(x + 4)(x2- 4x + 16)]

f(x) = (x - 4)(x - 2)/(x- 4x + 16)

So, the value of f(x) is (x - 4)(x - 2)/(x- 4x + 16).

Example 12 :

[(x + 7)/(x+ 14x + 49)] [(x+ 8x + 7)/(x + 1)]

Solution :

Let f(x) = [(x + 7)/(x+ 14x + 49)] [(x+ 8x + 7)/(x + 1)]

x+ 14x + 49 = (x + 7)(x + 7)

x+ 8x + 7 = (x + 1)(x + 7)

By applying the factors in f(x), we get

f(x) = [(x + 7)/(x + 7)(x + 7)] [(x + 1)(x + 7)/(x + 1)]

f(x)  =  1

So, the value of f(x) is 1.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. 10 Hard SAT Math Questions (Part - 33)

    Nov 07, 25 04:31 AM

    10 Hard SAT Math Questions (Part - 33)

    Read More

  2. Solving the HARDEST SAT Math Questions ONLY using Desmos

    Nov 04, 25 07:33 AM

    Solving the HARDEST SAT Math Questions ONLY using Desmos

    Read More

  3. 10 Hard SAT Math Questions (Part - 32)

    Oct 30, 25 08:57 AM

    digitalsatmath403.png
    10 Hard SAT Math Questions (Part - 32)

    Read More