SIMPLIFYING POLYNOMIAL EXPRESSIONS IN FRACTIONS

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Simplifying polynomial expressions is nothing but expressing the the rational expression to lowest term or simplest form.

The following steps ill be useful to simple rational expressions. 

Step 1 :

Factor both numerator and denominator, if it is possible.

Step 2 :

Identify the common factors in both numerator and denominator. 

Step 3 :

Remove the common factors found in both numerator and denominator.

Example 1 :

[(x- 2x)/(x + 2)] ⋅ [(3x + 6)/(x - 2)]

Solution :

Let f(x) = [(x- 2x)/(x + 2)] ⋅ [(3x + 6)/(x - 2)]

f(x) = [(x- 2x)/(x + 2)] ⋅ [(3x + 6)/(x - 2)]

f(x) = [x(x - 2)/(x + 2)] ⋅ [3(x + 2)/(x - 2)]

f(x) = 3x

So, the value of f(x) is 3x.

Example 2 :

[(x- 81)/(x- 4)]  [(x+ 6x + 8)/(x- 5x - 36)]

Solution :

Let f(x) = [(x- 81)/(x- 4)]  [(x+ 6x + 8)/(x- 5x - 36)]

x- 81 = x2- 92  ==> (x + 9)(x - 9)

x- 4 = x-  22  ==> (x + 2)(x - 2)

x+ 6x + 8 = (x + 2)(x + 4)

x- 5x - 36 = (x - 9)(x + 4)

f(x) = [(x + 9)( x - 9)/(x + 2)(x - 2)] ⋅ [(x + 2)(x + 4)/(x - 9)(x + 4)]

By simplifying (x + 9)/(x - 2)

So, the value of f(x) is (x + 9)/(x - 2).

Example 3 :

[(x- 3x - 10)/(x- x - 20)]  [(x- 2x + 4)/(x+ 8)]

Solution :

Let f(x) = [(x- 3x - 10)/(x- x - 20)]  [(x2-2x + 4)/(x+ 8)]

x- 3x - 10 = (x - 5)(x + 2)

x- x - 20 = (x - 5)(x + 4)

a+ b= (a + b)(a- ab + b2)

x+ 23 = (x + 2)(x- 2x + 4)

By applying the factors in f(x), we get

 =  [(x - 5)(x + 2)/(x - 5)(x + 4) [(x- 2x + 4)/(x + 2)(x2-2x + 4)]

=  1/(x + 4)

So, the value of f(x) is 1/(x + 4)

Example 4 :

[(x- 16)/(x2 - 3x + 2)]  [(x- 4)/(x+ 64)]  

[(x- 4x + 16)/(x- 2x - 8)]

Solution :

Let f(x) = [(x- 16)/(x2 - 3x + 2)]  [(x- 4)/(x+ 64)]  

[(x- 4x + 16)/(x- 2x - 8)]e

x- 16 = x- 4 ==> (x + 4)(x - 4)

x- 3x + 2 = (x - 1)(x - 2)

x- 4 = x- 22  ==> (x + 2)(x - 2)

x+ 64  = x+ 4 ==> (x + 4)(x- 4x + 16) 

x- 2x - 8 = (x - 4)(x + 2)

=  [(x+4)(x-4)/(x-1)(x-2)][(x+2)(x-2)/(x+4)(x2-4x+16)]

[(x2-4x+16)/(x-4)(x+2)]

f(x)  =  1/(x-1)

So, the value of f(x) is 1/(x-1).

Example 5 :

[(3x2+2x-1)/(x2-x-2)] [(2x2-3x-2)/(3x2+5x-2)]

Solution :

Let f(x)  =  [(3x2+2x-1)/(x2-x-2)]

 [(2x2-3x-2)/(3x2+5x-2)]

(3x2+2x-1)  =  (3x-1) (x+1)

(x2-x-2)  =  (x-2) (x+1)

(2x2-3x-2)  =  (2x+1) (x-2)

(3x2+5x-2) =   (2x-1) (x+2)

By applying the factors in f(x), we get

=  [(3x-1)(x+1)/(x-2) (x+1)][(2x+1) (x-2)/(2x-1) (x+2)]

=  (2x+1)/(x+2)

So, the value of f(x) is (2x+1)/(x+2).

Example 6 :

[(2x-1)/(x2+2x+4)] [(x4-8x)/(2x2+5x-3)] 

[(x+3)/(x2-2x)]

Solution :

Let f(x)  =  [(2x-1)/(x2+2x+4)] [(x4-8x)/(2x2+5x-3)] 

[(x+3)/(x2-2x)]

x4-8x  =  x(x3-23)

x4-8x  =  x(x-2)(x2+2x+4)

2x2+5x-3  =  (2x-1)(x+3)

x2-2x  =  x(x-2)

By applying the factors in f(x), we get

=  [(2x-1)/(x2+2x+4)][x(x-2)(x2+2x+4)/(2x-1)(x+3)] 

[(x+3)/x(x-2)]

=  1

So, the value of f(x) is 1.

Example 7 :

[(a+b)/(a-b)] [(a3-b3)/(a3+b3)]

Solution :

Let f(x)  =  [(a+b)/(a-b)] [(a3-b3)/(a3+b3)]

=  [(a+b)/(a-b)][(a-b)(a2+ab+b2)/(a+b) (a2-ab+b2)]

=  (a2+ab+b2)/(a2-ab+b2)

So, the value of f(x) is (a2+ab+b2)/(a2-ab+b2).

Example 8 :

[(x2-9y2)/(3x-3y)]  [(x2-y2)/(x2+4xy+3y2)]

Solution :

Let f(x)  =  [(x2-9y2)/(3x-3y)]  [(x2-y2)/(x2+4xy+3y2)]

x2-9y=  x2-(3y)2

x2-9y2  =  (x+3y)(x-3y)

3x-3y  =  3(x-y)

x2-y=  (x+y)(x-y)

x2+4xy+3y=  (x+3y)(x+y)

By applying the factors in f(x), we get

=  [(x+3y)(x-3y)/3(x-y)]⋅[(x+y)(x-y)/(x+3y)(x+y)]

By simplifying, we get

=  (x-3y)/3

So, the value of f(x) is (x-3y)/3.

Example 9 :

[(x2-4x-12)/(x2-3x-18)]  [(x2-2x-3)/(x2+3x+2)]

Solution :

Let f(x)  =  [(x2-4x-12)/(x2-3x-18)] 

 [(x2-2x-3)/(x2+3x+2)]

x- 4x - 12 = (x - 6)(x + 2)

x- 3x - 18 = (x - 6)(x + 3)

x- 2x - 3 = (x - 3)(x + 1)

x+ 3x + 2 = (x + 1)(x + 2)

f(x) = [(x - 6)(x + 2)/(x - 6)(x + 3)]⋅[(x - 3)(x + 1)/(x + 1)(x + 2)]

f(x) = (x - 3)/(x + 3)

So, the value of f(x) is (x - 3)/(x + 3).

Example 10 :

[(x2-3x-10)/(x2-x-20)][(x2-4x+16)/(x3+64)]

Solution :

Let f(x)  =  [(- 3x - 10)/(x- x - 20)][(x2- 4x + 16)/(x+ 64)]

x- 3x - 10 = (x - 5)(x + 2)

x- x - 20 = (x - 5)(x + 4)

x+ 43 = (x + 4)(x- 4x + 16)

By applying the factors in f(x), we get

f(x) = [(x - 5)(x + 2)/(x - 5)(x + 4)][(x- 4x + 16)/(x + 4)(x- 4x + 16)]

f(x) = (x + 2)/(x + 4)2

So, the value of f(x) is (x + 2)/(x + 4)2.

Example 11 :

 [(x2-16)/(x-2)] [(x2-4)/(x3+64)]

Solution :

Let f(x)  =  [(x2-16)/(x-2)] [(x2-4)/(x3+64)]

x2-16 = x- 42  ==> (x+4)(x-4)

x2-4  =  x- 22  ==> (x + 2)(x - 2)

x3+64  =  x+ 43 ==> (x + 4)(x- 4x + 16)

f(x) = [(x + 4)(x - 4)/(x - 2)] [(x + 2)(x - 2)/(x + 4)(x2- 4x + 16)]

f(x) = (x - 4)(x - 2)/(x- 4x + 16)

So, the value of f(x) is (x - 4)(x - 2)/(x- 4x + 16).

Example 12 :

[(x + 7)/(x+ 14x + 49)] [(x+ 8x + 7)/(x + 1)]

Solution :

Let f(x) = [(x + 7)/(x+ 14x + 49)] [(x+ 8x + 7)/(x + 1)]

x+ 14x + 49 = (x + 7)(x + 7)

x+ 8x + 7 = (x + 1)(x + 7)

By applying the factors in f(x), we get

f(x) = [(x + 7)/(x + 7)(x + 7)] [(x + 1)(x + 7)/(x + 1)]

f(x)  =  1

So, the value of f(x) is 1.

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

onlinemath4all_official_badge1.png

Recent Articles

  1. 10 Hard SAT Math Questions (Part - 44)

    Jan 12, 26 06:35 AM

    10 Hard SAT Math Questions (Part - 44)

    Read More

  2. US Common Core K-12 Curricum Algebra Solving Simple Equations

    Jan 07, 26 01:53 PM

    US Common Core K-12 Curricum Algebra Solving Simple Equations

    Read More

  3. 10 Hard SAT Math Questions (Part - 4)

    Jan 05, 26 06:56 PM

    digitalsatmath376.png
    10 Hard SAT Math Questions (Part - 4)

    Read More