SIMPLIFYING COMPLEX FRACTIONS WORKSHEET

Subscribe to our โ–ถ๏ธ YouTube channel ๐Ÿ”ด for the latest videos, updates, and tips.

Problems 1-4 : Simplify using method I.

Problem 1 :

(2x/27y2)/(6x2/9)

Problem 2 : 

(x/y + 1)/(1 - y/x)

Problem 3 : 

[x/y - y/x] [1/y2 - 1/x2]

Problem 4 : 

[(1 + x2)1/2 - x2/(1 + x2)1/2(1 + x2)

Problems 5-8 : Simplify using method II.

Problem 5 : 

(y/6x2(3/4y2)

Problem 6 : 

[5x/(x + 2)]/[10/(x - 2)]

Problem 7 : 

[x/y2 + 1/y] [y/x2 + 1/x]

Problem 8 : 

(x - y/3x) / (y + 1/9x2)

Problem 9 : 

simplifying-complex-fraction-q1

Problem 10 : 

simplifying-complex-fraction-q2.png

Problem 11 : 

simplifying-complex-fraction-q3.png

Detailed Answer Key

1. Answer : 

=  (2x/27y2)/(6x2/9)

The numerator of the compound fraction is already a single fraction, and so is the denominator.

Invert the the fraction in denominator and multiply.

=  (2x/27y2โ‹… (9/6x2)

=  (2x โ‹… 9) / (6xโ‹… 27y2)

Cancel common factors. 

=  1 / (3x โ‹… 3y2)

=  1/9xy2

2. Answer : 

=  (x/y + 1)/(1 - y/x)

We combine the terms in the numerator into a single fraction and do the same in the denominator. Then we invert and multiply.

=  [(x + y)/y]/[(x - y)/x]

Invert the the fraction in denominator and multiply.

=  [(x + y)/y)] โ‹… [x/(x - y)]

=  [x(x + y)] / [y(x - y)]

3. Answer : 

=  [x/y - y/x] [1/y2 - 1/x2]

We combine the terms in the numerator into a single fraction and do the same in the denominator. Then we invert and multiply.

=  [(x2 - y2)/xy] [(x- y2)/x2y2]

Invert the the fraction in denominator and multiply.

=  [(x2 - y2)/xy] โ‹… [x2y2/(x- y2)]

=  [(x2 - y2)x2y2] / [xy(x- y2)]

Cancel common factors. 

=  xy

4. Answer : 

=  [(1 + x2)1/2 - x2/(1 + x2)1/2(1 + x2)

We combine the terms in the numerator into a single fraction and do the same in the denominator. Then we invert and multiply.

=  [{(1 + x2) - x2}/(1 + x2)1/2(1 + x2)

=  [(1 + x2 - x2)/(1 + x2)1/2(1 + x2)

=  [1/(1 + x2)1/2(1 + x2)

Invert the the fraction in denominator and multiply.

=  [1/(1 + x2)1/2โ‹… [1/(1 + x2)]

=  1/[(1 + x2)1/2(1 + x2)]

=  1/(1 + x2)1/2 + 1

=  1/(1 + x2)3/2

5. Answer : 

=  (y/6x2(3/4y2)

The least common denominator of the fractions in both numerator and denominator is 12x2y2.

Multiply numerator and denominator by the LCD.

=  (y/6x2)(12x2y2) (3/4y2)(12x2y2)

Simplify. 

=  2y3/9x2

6. Answer : 

=  [5x/(x + 2)]/[10/(x - 2)]

The least common denominator of the fractions in both numerator and denominator is (x + 2)(x - 2). 

Multiply numerator and denominator by the LCD.

=  [5x/(x + 2)](x + 2)(x - 2) [10/(x - 2)](x + 2)(x - 2)

Simplify.

=  [5x(x - 2)]/[10(x + 2)]

=  x(x - 2)/2(x + 2)

7. Answer : 

=  [x/y2 + 1/y] [y/x2 + 1/x]

The least common denominator of the fractions in both numerator and denominator is x2y2

Multiply numerator and denominator by the LCD.

=  [x/y2 + 1/y](x2y2) [y/x2 + 1/x](x2y2)

Use the distributive property.

=  [x/y2 โ‹… x2y2 + 1/y โ‹… x2y2[y/x2 โ‹… x2y2 + 1/x โ‹… x2y2]

Simplify. 

=  [x3 + x2y]/[y3 + xy2]

Factor. 

=  [x2(x + y)]/[y2(y + x)]

=  x2/y2

8. Answer : 

=  (x - y/3x) (y + 1/9x2)

The least common denominator of the fractions in both numerator and denominator is 18x2.

Multiply numerator and denominator by the LCD.

=  (x - y/3x)(18x2) (y + 1/9x2)(18x2)

Use the distributive property.

=  (x โ‹… 18x2 - y/3x โ‹… 18x2(y โ‹… 18x2 + 1/9x2 โ‹… 18x2)

Simplify. 

=  (18x3 - 6xy)/(18x2y + 2)

Factor. 

=  [2x(9x2 - 3y)]/[2(9x2y + 1)]

=  x(9x2 - 3y)]/(9x2y + 1)

9. Answer : 

simplifying-complex-fraction-q1

Simplifying numerator :

= 4/(5 - x) + 5/(x - 5)

= -4/(x - 5) + 5/(5 - x)

= (-4 + 5)/(x - 5)

= 1/(x - 5)

Simplifying denominator :

= 2/x + 3/(x - 5)

= [2(x - 5) + 3x] / (x - 5)

= [2x - 10 + 3x] / (x - 5)

= [5x - 10] / (x - 5)

= 5(x - 2) / (x - 5)

Dividing the numerator and denominator, we get

 [1/(x - 5)] รท [5(x - 2) / (x - 5)]

 [1/(x - 5)] x [(x - 5) / 5(x - 2)]

= 1/5(x - 2)

10. Answer : 

simplifying-complex-fraction-q2.png

Simplifying numerator :

= 3/(x - 4) - 2/(4 - x)

= 3/(x - 4) + 2/(x - 4)

= (3 + 2) / (x - 4)

= 5/(x - 4)

Simplifying denominator :

= 2/(x - 4) - (2/x)

= [2x - 2(x - 4)]/x(x - 4)

= [2x - 2x + 8]/x(x - 4)

= 8/x(x - 4)

Dividing the numerator and denominator, we get

= [5/(x - 4)] รท [8/x(x - 4)]

= [5/(x - 4)] x [x(x - 4)/8]

 5/8x

11. Answer : 

simplifying-complex-fraction-q3.png

Simplifying numerator :

= (x + 2)/x - 2/(x - 1)

Least common multiple for the denominators are x(x - 1)

= [(x + 2)(x - 1) - 2x]/x(x - 1)

= [(x2 - x + 2x - 2) - 2x]/x(x - 1)

= [(x2 + x - 2) - 2x]/x(x - 1)

= (x2 + x - 2 - 2x)/x(x - 1)

= (x2 - x - 2)/x(x - 1)

Simplifying denominator :

= (x + 1)/x - [(x + 1)/(x - 1)]

= [(x + 1)(x - 1) - x(x + 1)]/x(x - 1)

= [(x2 - 1) - (x2 + x)]/x(x - 1)

= [x2 - 1 - x2 - x]/x(x - 1)

= -(x + 1) / x(x - 1)

Dividing the numerator and denominator, we get

= (x2 - x - 2)/x(x - 1) รท [-(x + 1) / x(x - 1)]

= [(x2 - x - 2)/x(x - 1)] x [-x(x - 1)/(x + 1)]

= -(x2 - x - 2)/(x + 1)

= -(x2 - 2x + x - 2)/(x + 1)

= -(x - 2)(x + 1)/(x + 1)

= -(x - 2)

Subscribe to our โ–ถ๏ธ YouTube channel ๐Ÿ”ด for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

ยฉAll rights reserved. onlinemath4all.com

Recent Articles

  1. 10 Hard SAT Math Questions (Part - 38)

    Dec 08, 25 12:12 AM

    digitalsatmath416.png
    10 Hard SAT Math Questions (Part - 38)

    Read More

  2. SAT Math Practice

    Dec 05, 25 04:04 AM

    satmathquestions1.png
    SAT Math Practice - Different Topics - Concept - Formulas - Example problems with step by step explanation

    Read More

  3. 10 Hard SAT Math Questions (Part - 37)

    Dec 03, 25 07:02 AM

    digitalsatmath411.png
    10 Hard SAT Math Questions (Part - 37)

    Read More