RELATION BETWEEN GCD AND LCM OF POLYNOMIALS PRACTICE QUESTIONS

Find the LCM of each pair of the following polynomials

1) x- 5x + 6, x+ 4x - 12 whose GCD is (x - 2)

Solution

2) x+ 3x+ 6x+ 5x + 3, x+ 2x+ x + 2 whose GCD is x+ x + 1

Solution

3) 2x+ 15x+ 2x - 35, x+ 8x+ 4x - 21 whose GCD is x + 7

Solution

4) 2x- 3x- 9x + 5, 2x- x- 10x- 11x + 8 whose GCD is 2x - 1

Solution

Find the other polynomial q(x) of each of the following, given that LCM and GCD and one polynomial p(x) respectively.

5)  (x + 1)2 (x + 2)2, (x + 1) (x + 2), (x + 1)2 (x + 2)

Solution

6) (4x + 5)3 (3x - 7)3, (4x + 5) (3x - 7)2, (4x + 5)3 (3x -7 )2

Solution

7) (x- y4)(x+ x2y+ y4), x- y2, x- y4      Solution

8)  (x- 4x) (5x + 1), (5x+ x), (5x- 9x- 2x)     Solution

9)  2(x + 1) (x- 4), (x + 1), (x + 1) (x - 2)     Solution

10)  (x - 1) (x - 2) (x-3x + 3), (x - 1), (x- 4x+ 6x - 3)

Solution

11)  2(x + 1) (x- 4), (x + 1), (x + 1) (x - 2)        Solution

Detailed Solution

1) Solution :

LCM ⋅ GCD  =  f(x) ⋅ g(x)

LCM  =  [f(x) ⋅ g(x)]/GCD

f(x)  =  x- 5x + 6

g(x)  =  x+ 4x - 12

GCD = (x - 2)

x- 5x + 6 = (x - 2 )(x - 3)

x+ 4x - 12 = (x + 6)(x - 2)

LCM = (x - 2)(x - 3)(x + 6)(x - 2)/(x - 2)

By canceling common factors, we get

LCM  =  (x - 2) (x - 3) (x + 6)

So, the required LCM is (x - 2) (x - 3) (x + 6).

2) Solution :

x+ 3x+ 6x+ 5x + 3, x+ 2x+ x + 2 whose GCD is x+ x +1 

LCM  =  [f(x) ⋅ g(x)]/GCD

f(x) = x+ 3x+ 6x+ 5x + 3

g(x) = x+ 2x+ x + 2

GCD = x+ x + 1

LCM  = [(x+ 3x+ 6x+ 5x + 3) (x+ 2x+ x + 2) ]/(x+ x + 1)

To simplify this, we have to use long division.

fac21

LCM  =  (x+ 2x + 3) (x+ 2x+ x + 2)

So, the required LCM is (x+ 2x + 3) (x+ 2x+ x + 2).

3) Solution :

2x+ 15x+ 2x - 35, x+ 8x+ 4x - 21 whose GCD is x + 7

LCM  =  [f(x) ⋅ g(x)]/GCD

f(x) = 2x+ 15x+ 2x - 35

g(x) = x+ 8x+ 4x - 21

GCD = x + 7

LCM  =  [(2x+ 15x+ 2x - 35) (x+ 8x+ 4x - 21)]/(x + 7)

To simplify this we have to use long division.

fac22

LCM  =  (2x+ x - 5) (x+ 8x+ 4x - 21)

So, the required LCM is  (2x+ x - 5) (x+ 8x+ 4x - 21).

4) Solution :

2x- 3x- 9x + 5, 2x- x- 10x- 11x + 8 whose GCD is 2x - 1

LCM = [f(x) ⋅ g(x)]/GCD

f(x) = 2x- 3x- 9x + 5

g(x) = 2x- x- 10x- 11x + 8

GCD  =  2x - 1

LCM  =  [(2x- 3x- 9x + 5) (2x- x- 10x- 11x + 8)]/(2x - 1)

To simplify this we have to use long division.

10thsamacheerex3.81r4thq

LCM  =  (x- 5x - 8) (2x- 3x- 9x + 5)

So, the LCM is (x- 5x - 8) (2x- 3x- 9x + 5).

5) Solution :

(x + 1)2 (x + 2)2, (x + 1) (x + 2), (x + 1)2 (x + 2)

LCM  GCD  =  p(x)  q(x)

L.C.M = (x+1)2 (x+2)2

GCD = (x+1) (x+2)

p(x) = (x+1)2 (x+2)

q(x)  =  [LCM  GCD]/p(x)

q(x)  =  [(x+1)2(x+2)2 (x+1) (x+2)]/(x+1)2 (x+2)

q(x)  =  (x+2)2 (x+1)

So, the other polynomial is (x+2)2 (x+1).

6) Solution :

(4x+5)3 (3x-7)3, (4x+5) (3x-7)2, (4x+5)3 (3x-7)2

LCM  GCD  =  p(x)  q(x)

LCM  =  (4x+5)3 (3x-7)3

GCD  =  (4x+5) (3x-7)2

p(x)  =  (4x+5)3 (3x-7)2

q(x)  =  [LCM  GCD]/p(x)

q(x)  =  [(4x+5)3 (3x-7)3(4x+5) (3x-7)2]/(4x+5)3 (3x-7)2

q(x)  =  (3x-7)3 (4x+5)

7) Solution :

(x4-y4)(x4+x2y2+y4), x2-y2, x4-y4

LCM  GCD  =  p(x)  q(x)

LCM  =  (x4-y4)(x4+x2y2+y4)

GCD  =  x2-y2

p(x)  =  x4-y4

q(x)  =  [LCM  GCD]/p(x)

q(x)  =  [(x4-y4)(x4+x2y2+y4)(x2-y2)]/(x4-y4)

q(x)  =  (x4+x2y2+y4)(x2-y2)

So, the other polynomial is (x4+x2y2+y4)(x2-y2).

8) Solution :

(x3-4x) (5x+1), (5x2+x), (5x3-9x2-2x)

LCM  GCD  =  p(x)  q(x)

LCM  =  (x3-4x) (5x+1)

GCD  =  5x2+x  =  x(5x+1)

p(x)  =  5x3-9x2-2x ==>  x(5x2-9x-2)

x(5x2-9x-2)  ==> x (5x+1)(x-2)

q(x)  =  [LCM  GCD]/p(x)

q(x)  =  [(x3-4x) (5x+1)(5x+1)]/[x (5x+1)(x-2)]

q(x)  =  [(x2-4)(5x+1)]/(x-2)

q(x)  =  [(x+2)(x-2)(5x+1)]/(x-2)

q(x)  =  (x+2)(5x+1)

So, the other polynomial is (x+2)(5x+1).

9) Solution :

(x-1) (x-2) (x2-3x+3), (x-1), (x3-4x2+6x-3)

LCM  GCD  =  p(x)  q(x)

LCM  =  (x-1) (x-2) (x2-3x+3)

GCD  =  (x-1)

p(x)  =  x3-4x2+6x-3

q(x)  =  [LCM  GCD]/p(x)

         =  [(x-1)(x-2)(x2-3x+3)(x-1)]/(x3-4x2+6x-3)

let us use synthetic division to find factors of the cubic polynomial.

fac24

=  [(x-1)(x-2) (x2-3x+3)(x-1)]/(x-1) (x2-3x+3)

=  (x-2)(x-1)

So, the other polynomial is (x-2)(x-1).

10) Solution :

2(x+1) (x2-4), (x+1), (x+1) (x-2)

LCM  GCD  =  p(x)  q(x)

LCM  =  2(x+1) (x2-4)

GCD  =  (x+1)

p(x)  =  (x+1) (x-2)

q(x)  =  [LCM  GCD]/p(x)

q(x)  =  [2(x+1) (x2-4)(x+1)]/(x+1) (x-2)

q(x)  =  [2(x+1) (x+2) (x-2) (x+1)]/(x+1) (x-2)

q(x)  =  2(x+1) (x+2)

So, the other polynomial is 2(x+1) (x+2).

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 188)

    Jun 17, 25 02:26 AM

    digitalsatmath254.png
    Digital SAT Math Problems and Solutions (Part - 188)

    Read More

  2. Midsegment Theorem

    Jun 15, 25 09:40 PM

    midsegmenttheorem1
    Midsegment Theorem - Concept - Solved Problems

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 187)

    Jun 14, 25 09:07 AM

    digitalsatmath252.png
    Digital SAT Math Problems and Solutions (Part - 187)

    Read More