FIND OTHER POLYNOMIAL WHEN ONE POLYNOMAILS ITS LCM AND GCD ARE GIVEN

Relationship between LCM and GCD of two polynomials :

LCM(f(x), g(x)) ⋅ GCD(f(x), g(x))  =  p(x) ⋅ q(x)

q(x)  =  [ LCM(f(x), g(x)) ⋅ GCD(f(x), g(x)) ]/p(x)

Find the other polynomial q(x) of each of the following, given that LCM and GCD and one polynomial p(x) respectively.

Example 1 :

(x + 1)2 (x + 2)2, (x + 1) (x + 2), (x + 1)2 (x + 2)

Solution :

(x + 1)2 (x + 2)2, (x + 1) (x + 2), (x + 1)2 (x + 2)

LCM  GCD  =  p(x)  q(x)

L.C.M = (x + 1)2 (x + 2)2

GCD = (x + 1) (x + 2)

p(x) = (x+1)2 (x+2)

q(x) = [LCM  GCD]/p(x)

q(x) = [(x + 1)2(x + 2)2 (x + 1) (x + 2)]/(x + 1)2 (x + 2)

q(x) = (x + 2)2 (x + 1)

So, the other polynomial is (x + 2)2 (x + 1).

Example 2 :

(4 x +5)3 (3x - 7)3, (4x + 5) (3x - 7)2, (4x + 5)3 (3x - 7)2

Solution :

(4x + 5)3 (3x - 7)3, (4x + 5) (3x - 7)2, (4x + 5)3 (3x - 7)2

LCM  GCD  =  p(x)  q(x)

LCM = (4x + 5)3 (3x - 7)3

GCD = (4x + 5) (3x - 7)2

p(x) = (4x + 5)3 (3x - 7)2

q(x) = [LCM  GCD]/p(x)

q(x)  =  [(4x + 5)3 (3x - 7)3(4x + 5) (3x - 7)2]/(4x + 5)3 (3x - 7)2

q(x) = (3x - 7)3 (4x + 5)

So, the other polynomial is (3x - 7)3 (4x + 5).

Example 3 :

(x- y4)(x+ x2y+ y4), x- y2, x- y4

Solution :

(x- y4)(x+ x2y+ y4), x- y2, x- y4

LCM  GCD = p(x)  q(x)

LCM = (x- y4)(x+ x2y+ y4)

GCD = x- y2

p(x) = x- y4

q(x) = [LCM  GCD]/p(x)

q(x) = [(x- y4)(x+ x2y+ y4)(x- y2)]/(x- y4)

q(x) = (x+ x2y+ y4)(x- y2)

So, the other polynomial is (x+ x2y+ y4)(x- y2).

Example 4 :

(x- 4x) (5x + 1), (5x+ x), (5x- 9x- 2x)

Solution :

(x- 4x) (5x + 1), (5x+ x), (5x- 9x- 2x)

LCM  GCD = p(x)  q(x)

LCM = (x- 4x) (5x + 1)

GCD = 5x+ x = x(5x + 1)

p(x) = 5x- 9x- 2x ==>  x(5x- 9x -2)

x(5x- 9x - 2)  ==> x (5x + 1)(x - 2)

q(x) = [LCM  GCD]/p(x)

q(x) = [(x- 4 x) (5x + 1)(5x + 1)]/[x (5x + 1)(x - 2)]

q(x) = [(x- 4 )(5x + 1)]/(x - 2)

q(x) = [(x + 2)(x - 2)(5x + 1)]/(x - 2)

q(x) = (x + 2)(5x + 1)

So, the other polynomial is (x + 2)(5x + 1).

Example 5 :

(x - 1) (x - 2) (x- 3x + 3), (x - 1), (x- 4x+ 6x - 3)

Solution :

(x - 1) (x - 2) (x- 3x + 3), (x - 1), (x- 4x+ 6x - 3)

LCM  GCD  =  p(x)  q(x)

LCM = (x - 1) (x - 2) (x- 3x + 3)

GCD = (x-1)

p(x) = x- 4x+ 6x - 3

q(x)  =  [LCM  GCD]/p(x)

=  [(x - 1)(x - 2)(x- 3x + 3)(x - 1)]/(x- 4x+ 6x - 3)

let us use synthetic division to find factors of the cubic polynomial.

=  [(x - 1)(x - 2) (x- 3x + 3)(x - 1)]/(x - 1) (x- 3x + 3)

=  (x - 2)(x - 1)

So, the other polynomial is (x - 2)(x - 1).

Example 6 :

2(x + 1) (x- 4), (x + 1), (x + 1) (x - 2)

Solution :

2(x + 1) (x- 4), (x + 1), (x + 1) (x - 2)

LCM  GCD = p(x)  q(x)

LCM = 2(x + 1) (x- 4)

GCD = (x + 1)

p(x) = (x + 1) (x - 2)

q(x)  =  [LCM  GCD]/p(x)

q(x) = [2(x + 1) (x- 4)(x + 1)]/(x + 1) (x - 2)

q(x) = [2(x + 1) (x + 2) (x - 2) (x + 1)]/(x + 1) (x - 2)

q(x) = 2(x + 1) (x + 2)

So, the other polynomial is 2(x + 1) (x + 2).

Example 7 :

LCM = a3 - 10a2 + 11a + 70, GCD = a - 7

p(x) = a2 - 12a + 35

Solution :

(LCM  GCD = p(x)  q(x)

LCM = a3 - 10a2 + 11a + 70

GCD = a - 7

p(x) = a2 - 12a + 35

q(x)  =  [LCM  GCD]/p(x)

q(x) = [(a3 - 10a2 + 11a + 70)  (a - 7)] / (a2 - 12a + 35)

find-other-polynomial-q1

Factoring the cubic polynomial,  a3 - 10a2 + 11a + 70

(a - 5) (a2 - 5a - 14) are factors

a2 - 5a - 14 = (a - 7)(a + 2)

Factoring the polynomial a2 - 12a + 35, we get

= (a - 7)(a - 5)

q(x) = [ (a - 5) (a - 7)(a + 2)  (a - 7)] / (a - 7)(a - 5)

q(x) = (a + 2)(a - 7)

q(x) = a2 + 2a - 7a - 14

= a2 - 5a - 14

So, the required polynomial q(x) is a2 - 5a - 14.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 188)

    Jun 17, 25 02:26 AM

    digitalsatmath254.png
    Digital SAT Math Problems and Solutions (Part - 188)

    Read More

  2. Midsegment Theorem

    Jun 15, 25 09:40 PM

    midsegmenttheorem1
    Midsegment Theorem - Concept - Solved Problems

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 187)

    Jun 14, 25 09:07 AM

    digitalsatmath252.png
    Digital SAT Math Problems and Solutions (Part - 187)

    Read More