RATIONALIZING THE DENOMINATOR WITH VARIABLES

Subscribe to our ▢️ YouTube channel πŸ”΄ for the latest videos, updates, and tips.

Rationalizing the denominator means eliminating any radical expressions in the denominator such as square roots and cube roots.

Key Idea :

Multiply both the numerator and denominator of the given fraction by an appropriate value, such that after simplification, the denominator no longer contains radicals.

When you have a binomial with radical term like (x + βˆšy) in denominator, multiply both numerator and denominator by the conjugate of (x + βˆšy), that is (x - βˆšy). 

Rationalize the denominator in the following examples.

Example 1 : 

ΒΉβ„βˆšβ‚“

Solution : 

ΒΉβ„βˆšβ‚“

Multiply both the numerator and denominator by βˆšx. 

=  (1 β‹… βˆšx)/(√x β‹… βˆšx)

√x/x

Example 2 : 

¹⁄₍ₓ β‚Š √yβ‚Ž

Solution : 

¹⁄₍ₓ β‚Š √yβ‚Ž

Multiply both numerator and denominator by (x - βˆšy).

=  [1 β‹… (x - βˆšy)] / [(x + βˆšy)(x - βˆšy)]

Use the algebraic identity a2 - b= (a + b)(a - b) in denominator to simplify.

(x - βˆšy) / [x2 - (√y)2]

=  (x - βˆšy) / (x2 - y)

Example 3 : 

⁽√ˣ ⁺ βˆšΚΈβΎβ„βˆšx

Solution : 

⁽√ˣ ⁺ βˆšΚΈβΎβ„βˆšx

Multiply both the numerator and denominator by βˆšx. 

=  (√x + βˆšy)√x / (√x β‹… βˆšx)

Distribute and simplify. 

=  [(√x β‹… βˆšx) + (√y β‹… βˆšx)] / x

=  [x + βˆš(xy)]/x

Example 4 : 

(√x + βˆšy)/(√x - βˆšy)

Solution : 

=  (√x + βˆšy)/(√x - βˆšy)

Multiply both numerator and denominator by (x + βˆšy).

=  [(√x + βˆšy)(√x + βˆšy)] / [(√x - βˆšy)(√x + βˆšy)]

(√x + βˆšy)2 / [(√x)2 - (√y)2]

=  [(√x)2 + 2√x√y + (√y)2] / (x - y)

= (x + 2√(xy) + y) / (x - y)

Example 5 : 

√(100x/11y)

Solution : 

=  √(100x/11y)

Distribute the radical to numerator and denominator. 

=  √(100x)/√(11y)

So, multiply both numerator and denominator by the 11y. 

=  [√(100x) β‹… βˆš(11y)] / βˆš(11y) β‹… βˆš(11y)]

Simplify.

=  √(100x β‹… 11y) / 11y

100 is a perfect square and βˆš100 = 10.

=  10√(11xy) / 11y

Example 6 : 

Find the value of ab.

1/(x + y√3)

Solution : 

=  1/(x + y√3)

Multiply both numerator and denominator by (x - y√3). 

=  [1 β‹… (x - y√3)] / [(x + y√3)(x - y√3)]

Use the algebraic identity a2 - b= (a + b)(a - b) in denominator to simplify.

=  (x - y√3) / [x2 - (y√3)2]

=  (x - y√3) / [x2 + y2(√3)2]

=  (x - y√3) / (x2 + 3y2)

Subscribe to our ▢️ YouTube channel πŸ”΄ for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

Β©All rights reserved. onlinemath4all.com

Recent Articles

  1. 10 Hard SAT Math Questions (Part - 38)

    Dec 08, 25 12:12 AM

    digitalsatmath416.png
    10 Hard SAT Math Questions (Part - 38)

    Read More

  2. SAT Math Practice

    Dec 05, 25 04:04 AM

    satmathquestions1.png
    SAT Math Practice - Different Topics - Concept - Formulas - Example problems with step by step explanation

    Read More

  3. 10 Hard SAT Math Questions (Part - 37)

    Dec 03, 25 07:02 AM

    digitalsatmath411.png
    10 Hard SAT Math Questions (Part - 37)

    Read More