RADICAL EQUATIONS WITH EXTRANEOUS SOLUTIONS WORKSHEET

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Problem 1 :

Solve √(x - 2) = (x - 4)

Solution :

√(x-2)  =  (x- 4)

Squaring both sides,

[√(x-2)]2  =  (x- 4)2

(x - 2)  =  (x- 2 x (4) + 42)

x - 2  =  x- 8 x + 16

x- 8 x + 16 - x + 2  =  x - 2 - x + 2

x- 9 x + 18  =  0

(x - 6) (x - 3)  =  0

x - 6  =  0

Add 6 on both sides

x  =  6

x - 3  =  0

Add 3 on both sides

x  =  3

let us apply the above values one by one to check which is an extraneous solution.

x  =  6

√(6-2)  =  (6-4)

√4  =  2

2  =  2

x  =  3

√(3-2)  =  (3 - 4)

√1  = -1

1    -1

Since 3 does not satisfy the original equation, 6 is the only solution.

Hence 3 is the extraneous solution and 6 is the solution.

Problem 2 :

Solve for x

x  =  √(6 - x)

Solution :

x  =  √(6 - x)

Squaring both sides,

x2  =  [√(6 - x)]2

x2  =  6 - x 

Add x and subtract 6 on both sides, we get

x2 - 6 + x  =  6 - x + x - 6

x2 + x - 6  =  0

By factoring the above quadratic equation, we get

(x - 2)(x + 3)  =  0

x - 2  =  0

Add 2 on both sides, we get

x - 2 + 2  =  0 + 2

x  =  2

x + 3  =  0

Subtract 3 on both sides, we get

x + 3 - 3  =  0 - 3

x  =  -3

Now let us apply each values one by one in the original equation,

x  =  √(6 - x)

x  =  2

2  =  √(6 - 2)

2  =  √4

2  =  2

x  =  √(6 - x)

x  =  -3

-3  =  √(-3 - 2)

-3 ≠  √-5

Since -3 does not satisfy the original equation, 2 is the only solution.

Hence 2 is the extraneous solution and 6 is the solution.

Problem 3 :

Solve for x

x  =  √x + 20

Solution :

x  =  √x + 20

Squaring both sides,

x2  =  [√(x + 20)]2

x2  =  x + 20 

x2  - x - 20  =  x + 20 - x - 20

x2  - x - 20  =  0

By factoring the above quadratic equation, we get

(x - 5)(x + 4)  =  0

x - 5  =  0

Add 5 on both sides

x - 5 + 5  =  0 + 5

x  =  5

x + 4  =  0

Subtract 4 on both sides

x + 4 - 4  =  0 - 4

x  =  -4

Now let us apply each values one by one in the original equation,

x  =  √(x + 20)

x  =  5

5  =  √(5 + 20)

5  =  √25

5  =  5

x  =  √(x + 20)

x  =  -4

-4  =  √(-4 + 20)

-4  =  √16

-4  4

Since -4 does not satisfy the original equation, 5 is the only solution.

Hence -4 is the extraneous solution and 5 is the solution.

Problem 4 :

The number of dogs, D, housed at a county animal shelter is modeled by the function

D = 4√(2M) + 50

where M is the number of months the shelter has been open. How many months will it take for 74 dogs to be housed at the shelter?

Solution :

D = 4√(2M) + 50

Given that, number of dogs = 74

74 = 4√(2M) + 50

74 - 50 = 4√(2M)

24 = 4√(2M)

24/4 = √(2M)

6 = √(2M)

Squaring on both sides

62 = 2M

36 = 2M

M = 36/2

M = 18

Problem 5 :

What is the solution set of the equation 

y = 2 + √(y2 - 12)

Solution :

y = 2 + √(y2 - 12)

y - 2 = √(y2 - 12)

(y - 2)2 = y2 - 12

y2 - 2(y)(2) + 22 = y2 - 12

y2 - 4y + 4 = y2 - 12

-4y + 4 = -12

-4y = -12 - 4

-4y = -16

y = 16/4

y = 4

So, the value of y is 4.

Problem 6 :

Solve algebraically for x 

√(x2 + x - 1) + 11x = 7x + 3

Solution :

√(x2 + x - 1) + 11x = 7x + 3

√(x2 + x - 1) = 7x - 11x + 3

√(x2 + x - 1) =  -4x + 3

(x2 + x - 1) =  (-4x + 3)2

(x2 + x - 1) = (3 - 4x)2

(x2 + x - 1) = 32 - 2(3)(4x) + (4x)2

(x2 + x - 1) = 9 - 24x + 16x2

16x2 - x2 - 24x - x + 9 + 1 = 0

15x2 - 25x + 10 = 0

3x2 - 5x + 2 = 0

3x2 - 2x - 3x + 2 = 0

x(3x - 2) - 1(3x - 2) = 0

(x - 1)(3x - 2) = 0

x = 1 and x = 2/3

So, the values of x are 1 and 2/3.

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. 10 Hard SAT Math Questions (Part - 38)

    Dec 08, 25 12:12 AM

    digitalsatmath416.png
    10 Hard SAT Math Questions (Part - 38)

    Read More

  2. SAT Math Practice

    Dec 05, 25 04:04 AM

    satmathquestions1.png
    SAT Math Practice - Different Topics - Concept - Formulas - Example problems with step by step explanation

    Read More

  3. 10 Hard SAT Math Questions (Part - 37)

    Dec 03, 25 07:02 AM

    digitalsatmath411.png
    10 Hard SAT Math Questions (Part - 37)

    Read More