PROPERTIES OF MATRIX MULTIPLICATION

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

(i) Commutative Property :

If A and B are two matrices and if AB and BA both are defined, it is not necessary that

AB  =  BA

Note :

Multiplication of two diagonal matrices of same order is commutative. Also, under matrix multiplication unit matrix commutes with any square matrix of same order.

(ii) Associative Property :

For any three matrices A, B and C, we have

(AB)C  =  A(BC)

whenever both sides of the equality are defined.

(iii) Matrix multiplication is distributive over addition :

For any three matrices A, B and C, we have

(i) A(B + C)  =  AB + AC

(ii) (A + B)C  =  AC + BC

whenever both sides of equality are defined

(iv)  Existence of multiplicative identity :

For any square matrix A of order n, we have

AI  =  IA  = A

where I is the unit matrix of order n. Hence, I is known as the identity matrix under multiplication.

(v)  Existence of multiplicative inverse :

If A is a square matrix of order n, and if there exists a square matrix B of the same order n,

such that AB  =  BA  =  I

where I is the unit matrix of order n, then B is called the multiplicative inverse matrix of A

It is denoted by A-1

(vi) Reversal law for transpose of matrices :

If A and B are two matrices and if AB is defined,

then

(AB)T  =  BTAT

Matrix Multiplication is not Commutative - Example


A  =  
 
1 2
5 3
 
 
B  =  
 
2 5
7 3
 

Find the product of A and B : 

AB  =  
 
1 2
5 3
 
x
 
2 5
7 3
 
 

=
 
1 2
 
x
 
2
7
 
 
 
1 2
 
x
 
5
3
 


  
 
5 3
 
x
 
2
7
 
 
 
5 3
 
x
 
5
3
 

=
 
(2+14) (5+6)
(10+21) (25+9)
 

AB  =  
 
16 11
31 34
 

Find the product of B and A : 

BA  =  
 
2 5
7 3
 
x
 
1 2
5 3
 
 

=
 
2 5
 
x
 
1
5
 
 
 
2 5
 
x
 
2
3
 


  
 
7 3
 
x
 
1
5
 
 
 
7 3
 
x
 
2
3
 

=
 
(2+25) (4+15)
(7+15) (14+9)
 

BA  =  
 
27 19
22 23
 

Therefore, 

AB  ≠  BA

Associative Property - Example


A =
 
1 2
5 3
 
 
B =
 
2 5
7 3
 
C =
 
1 3
5 1
 

Find the product of B and C :

BC  =  
 
2 5
7 3
 
x
 
1 3
5 1
 
 

=
 
2 5
 
x
 
1
5
 
 
 
2 5
 
x
 
3
1
 


  
 
7 3
 
x
 
1
5
 
 
 
7 3
 
x
 
3
1
 

=
 
(2+25) (6+5)
(7+15) (21+3)
 

BC  =  
 
27 11
22 24
 

Find the product of A and (BC) :

A(BC)  =  
 
1 2
5 3
 
x
 
27 11
22 24
 
 

=
 
(27+44) (11+48)
(135+66) (55+72)
 

A(BC)  =  
 
71 59
201 127
 

Find the product of A and B :

AB  =  
 
1 2
5 3
 
x
 
2 5
7 3
 
 

=
 
1 2
 
x
 
2
7
 
 
 
1 2
 
x
 
5
3
 


  
 
5 3
 
x
 
2
7
 
 
 
5 3
 
x
 
5
3
 

=
 
(2+14) (5+6)
(10+21) (25+9)
 

AB  =  
 
16 11
31 34
 

Find the product of (AB) and C :

(AB)C  =  
 
16 11
31 34
 
x
 
1 3
5 1
 
 

=
 
16 11
 
x
 
1
5
 
 
 
16 11
 
x
 
3
1
 


  
 
31 34
 
x
 
1
5
 
 
 
31 34
 
x
 
3
1
 

=
 
(16+55) (48+11)
(31+170) (93+34)
 

(AB)C  =  
 
71 59
201 127
 

Therefore, 

A(BC)  =  (AB)C

Distributive Property - Example


A =
 
1 2
5 3
 
 
B =
 
2 5
7 3
 
C =
 
1 3
5 1
 

Find the addition of B and C :

B+C  =  
 
2 5
7 3
 
+
 
1 3
5 1
 
 

=
 
3 8
12 4
 

Find the product of A and (B + C) :

A(B + C)  =  
 
1 2
5 3
 
x
 
3 8
12 4
 
 


=
 
1 2
 
x
 
3
12
 
 
 
1 2
 
x
 
8
4
 


  
 
5 3
 
x
 
3
12
 
 
 
5 3
 
x
 
8
4
 

=
 
(3+24) (8+8)
(15+36) (40+12)
 

A(B + C)  =  
 
27 16
51 52
 

Find the product of A and B :

AB  =  
 
1 2
5 3
 
x
 
2 5
7 3
 
 

=
 
1 2
 
x
 
2
7
 
 
 
1 2
 
x
 
5
3
 


  
 
5 3
 
x
 
2
7
 
 
 
5 3
 
x
 
5
3
 

=
 
(2+14) (5+6)
(10+21) (25+9)
 

AB  =  
 
16 11
31 34
 

Find the product of A and C :

AC  =  
 
1 2
5 3
 
x
 
1 3
5 1
 
 

=
 
1 2
 
x
 
1
5
 
 
 
1 2
 
x
 
3
1
 


  
 
5 3
 
x
 
1
5
 
 
 
5 3
 
x
 
3
1
 

=
 
(1+10) (3+2)
(5+15) (15+3)
 

AC  =  
 
11 5
20 18
 

Find the addition of AB and AC :

AB + AC  =  
 
16 11
31 34
 
+
 
11 5
20 18
 
 

    =  
 
(16+11) (11+5)
(31+20) (34+18)
 

AB + AC  =  
 
27 16
51 52
 

Therefore,

A(B + C)  =  AB + AC

Identity Property - Example

A =
 
1 2
5 3
 
 
I =
 
1 0
0 1
 
 

Find the product of A and I :

AI  =  
 
1 2
5 3
 
x
 
1 0
0 1
 
 

=
 
1 2
 
x
 
1
0
 
 
 
1 2
 
x
 
0
1
 


  
 
5 3
 
x
 
1
0
 
 
 
5 3
 
x
 
0
1
 

=
 
(1+0) (0+2)
(5+0) (0+3)
 

AI  =  
 
1 2
5 3
 

Find the product of I and A :

AI  =  
 
1 0
0 1
 
x
 
1 2
5 3
 
 

=
 
1 0
 
x
 
1
5
 
 
 
1 0
 
x
 
2
3
 

=
 
0 1
 
x
 
1
5
 
 
 
0 1
 
x
 
2
3
 

=
 
(1+0) (2+0)
(0+5) (0+3)
 

IA  =  
 
1 2
5 3
 

Therefore,

AI  =  IA

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Quantitative Reasoning Questions and Answers

    Dec 14, 25 06:42 AM

    Quantitative Reasoning Questions and Answers

    Read More

  2. Specifying Units of Measure

    Dec 14, 25 06:38 AM

    Specifying Units of Measure

    Read More

  3. Coin Tossing Probability

    Dec 13, 25 10:11 AM

    Coin Tossing Probability - Concept - Sample Space - Formula - Solved Problems

    Read More