PRODUCT OF COMPLEX NUMBERS IN POLAR FORM

Subscribe to our ▢️ YouTube channel πŸ”΄ for the latest videos, updates, and tips.

How to multiply complex numbers in polar form ? 

Let z1  =  r1(cos ΞΈ+ i sin ΞΈ) and z2  =  r2(cos ΞΈ2 + i sin ΞΈ2 ) be two complex numbers in the polar form.

We can use the formula given below to find the product of two complex numbers in the polar form.

z. z2  =  r1r2[cos (ΞΈ1 + ΞΈ2) + i sin (ΞΈ1 + ΞΈ2)]

Find the product of z1 and z2.

Example 1 :

z=  7(cos 25˚ + i sin 25˚)

z2  =  2(cos 130˚ + i sin 130˚)

Solution :

By using the z. z2 formula, we get

z1 . z=  (7 . 2)[cos (25˚ + 130˚) + i sin (25˚ + 130˚)]

z. z2  =  14(cos 155˚ + i sin 155˚)

Example 2 :

z1  =  βˆš2(cos 118˚ + i sin 118˚)

z2  =  0.5(cos (-19˚) + i sin (-19˚)

Solution :

By using the z1 . zformula, we get

z. z2  =  (√2 . (1/2))[cos (118˚ - 19˚) + i sin (118˚ - 19˚)]

z. z2  =  (1/√2)(cos 99˚ + i sin 99˚)

Example 3 :

z1  =  5(cos Ο€/4 + i sin Ο€/4)

z2  =  3(cos 5Ο€/4 + i sin 5Ο€/4)

Solution :

z. z2  =  (5 . 3)[cos (Ο€/4 + 5Ο€/3) + i sin (Ο€/4 + 5Ο€/3)]

Taking the least common multiple, we get

z. z2  =  15[cos ((3Ο€ + 20Ο€)/12) + i sin ((3Ο€ + 20Ο€)/12)]

z. z2  =  15[cos (23Ο€/12) + i sin (23Ο€/12)]

Example 4 :

z1  =  βˆš3(cos 3Ο€/4 + i sin 3Ο€/4)

z2  =  1/3(cos Ο€/6 + i sin Ο€/6)

Solution :

z. z2  =  (√3 . 1/3)[cos (3Ο€/4 + Ο€/6) + i sin (3Ο€/4 + Ο€/6)]

Taking the least common multiple, we get

z. z2  =  (1/√3)[cos ((9Ο€ + 2Ο€)/12) + i sin ((9Ο€ + 2Ο€)/12)]

z. z2  =  (1/√3)[cos (11Ο€/12) + i sin (11Ο€/12)

Write your answer in rectangular form when rectangular form is given and in polar form when polar form is given.

Example 5 :

(4 + 4i) (5 - 3i)

Solution :

(4 + 4i) (5 - 3i)

= 20 - 12i + 20i - 12i2

= 20 + 8i - 12(-1)

= 20 + 12 + 8i

= 32 + 8i

Example 6 :

4√2(cos 7Ο€/4 + i sin 7Ο€/4) β‹… 2(cos Ο€/6 + i sin Ο€/6)

Solution :

4√2(cos 7Ο€/4 + i sin 7Ο€/4) β‹… 2(cos Ο€/6 + i sin Ο€/6)

= 4√2(2) [cos (7Ο€/4 + Ο€/6) + i sin (7Ο€/4 + Ο€/6)]

= 8√2 [cos (21Ο€ + 2Ο€)/4 + i sin (21Ο€ + 2Ο€)/4]

= 8√2 [cos (23Ο€/4) + i sin (23Ο€/4)]

Example 7 :

[2√2(cos 7Ο€/6 + i sin 7Ο€/6)] / [6(cos 11Ο€/6 + i sin 11Ο€/6)]

Solution :

= [2√2(cos 7Ο€/6 + i sin 7Ο€/6)] / [6(cos 11Ο€/6 + i sin 11Ο€/6)]

= (2√2/6)[cos (7Ο€/6 - 11Ο€/6) + i sin (7Ο€/6 - 11Ο€/6)]

= (√2/3)[cos (7Ο€ - 11Ο€)/6 + i sin (7Ο€ - 11Ο€)/6]

= (√2/3)[cos (-4Ο€/6) + i sin (-4Ο€/6)]

= (√2/3)[cos (-2Ο€/3) + i sin (-2Ο€/3)]

Find the product of the complex numbers in polar form. Answer in both polar form and rectangular form.

Example 8 :

𝑧1 = 4(cos 225Β° + 𝑖sin 225Β°) and 𝑧2 = 3(cos 90Β° + 𝑖sin 90Β°)

Solution :

Given that, 𝑧1 = 4(cos 225Β° + 𝑖sin 225Β°)

𝑧2 = 3(cos 90Β° + 𝑖sin 90Β°)

𝑧1𝑧2 4(cos 225Β° + 𝑖sin 225Β°) β‹… 3(cos 90Β° + 𝑖sin 90Β°)

= 4(3) [cos (225Β° + 90Β°) + i sin  (225Β° + 90Β°)]

Polar form :

= 12 [cos 315Β° + i sin 315Β°]

Converting into rectangular form :

= 12 [cos (360 - 45) + i sin (360 - 45)]

= 12 [cos 45 + i sin 45]

= 12 [√2/2 + i√2/2]

= 12 (1/2) (√2 + i√2)

= 6 (√2 + i√2)

Example 9 :

𝑧1√2(cos 2Ο€/3 + 𝑖 sin 2Ο€/3) and 𝑧2 = 1/5(cos Ο€/6 + 𝑖sin Ο€/6)

Solution :

Given that, 𝑧1√2(cos 2Ο€/3 + 𝑖 sin 2Ο€/3)

𝑧2 = 1/5(cos Ο€/6 + 𝑖sin Ο€/6)

= [√2(cos 2Ο€/3 + 𝑖 sin 2Ο€/3)] β‹… [1/5(cos Ο€/6 + 𝑖sin Ο€/6)]

= (√2/5) [cos (2Ο€/3 + Ο€/6) + i sin (2Ο€/3 + Ο€/6)]

= (√2/5) [cos (4Ο€ + Ο€)/6 + i sin (4Ο€ + Ο€)/6]

Polar form :

= (√2/5) [cos 5Ο€/6 + i sin 5Ο€/6]

Converting into rectangular form, we get

= (√2/5) [cos (Ο€ - Ο€/6) + i sin (Ο€ - Ο€/6)]

= (√2/5) [cos (Ο€/6) + i sin (Ο€/6)]

= (√2/5) [√3/2 + i (1/2)]

= (√2/5) [(√3 + i)/2]

Multiplying both numerator and denominator by βˆš2

= (1/5) [(√3 + i)/√2]

Rectangular form :

= (√3 + i) / 5√2

Find the quotient of the complex numbers in polar form: 𝑧1/𝑧2 Write the answer in both polar form and rectangular form. 

Example 10 :

𝑧1 = 2(cos210Β° + 𝑖sin210Β°) and 𝑧2 = 8(cos60Β° + 𝑖sin60Β°)

Solution :

𝑧1 = 2(cos 210Β° + 𝑖sin 210Β°) and 𝑧2 = 8(cos 60Β° + 𝑖sin 60Β°)

𝑧1 / 𝑧2 = (2/8) cos (cos 210Β° + 𝑖sin 210Β°)/(cos 60Β° + 𝑖sin 60Β°)

= (1/4)[cos (210 - 60) + i sin (210 - 60)]

= (1/4)[cos 150 + i sin 150]

= (1/4)[cos (180 - 30) + i sin (180 - 30)]

= (1/4)[cos 30 + i sin 30]

= (1/4)[√3/2 + i (1/2)]

= (1/4)(√3 + i)/2)]

= (√3 + i)/8

Example 11 :

𝑧= 2/5 (cosπœ‹/2 +𝑖 sin πœ‹/2) and 𝑧= 1/2 (cos 5πœ‹/4 + 𝑖 sin 5πœ‹/4)

Solution :

𝑧= 2/5 (cosπœ‹/2 +𝑖 sin πœ‹/2) and 𝑧= 1/2 (cos 5πœ‹/4 + 𝑖 sin 5πœ‹/4)

𝑧1 / 𝑧2 = (2/5)/(1/2) (cos (πœ‹/2 - 5πœ‹/4) + 𝑖 sin (πœ‹/2 - 5πœ‹/4))

= (1/5) (cos (-3πœ‹/4) + 𝑖 sin (-3πœ‹/4))

(1/5) (cos (3πœ‹/4) - 𝑖 sin (3πœ‹/4))

(1/5) (cos (πœ‹ - πœ‹/4) - 𝑖 sin (πœ‹ - πœ‹/4))

(1/5) (√2/2 - 𝑖 √2/2)

(1/5) (√2- 𝑖 √2)/2)

= (√2- 𝑖 √2)/10

Subscribe to our ▢️ YouTube channel πŸ”΄ for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

Β©All rights reserved. onlinemath4all.com

Recent Articles

  1. 10 Hard SAT Math Questions (Part - 36)

    Nov 28, 25 09:55 AM

    digitalsatmath409.png
    10 Hard SAT Math Questions (Part - 36)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 7)

    Nov 26, 25 09:03 AM

    Digital SAT Math Problems and Solutions (Part - 7)

    Read More

  3. Hcf and Lcm Word Problems

    Nov 21, 25 09:03 AM

    Hcf and Lcm Word Problems

    Read More