Subscribe to our βΆοΈ YouTube channel π΄ for the latest videos, updates, and tips.
How to multiply complex numbers in polar form ?
Let z1 = r1(cos ΞΈ1 + i sin ΞΈ1 ) and z2 = r2(cos ΞΈ2 + i sin ΞΈ2 ) be two complex numbers in the polar form.
We can use the formula given below to find the product of two complex numbers in the polar form.
z1 . z2 = r1r2[cos (ΞΈ1 + ΞΈ2) + i sin (ΞΈ1 + ΞΈ2)]
Find the product of z1 and z2.
Example 1 :
z1 = 7(cos 25Λ + i sin 25Λ)
z2 = 2(cos 130Λ + i sin 130Λ)
Solution :
By using the z1 . z2 formula, we get
z1 . z2 = (7 . 2)[cos (25Λ + 130Λ) + i sin (25Λ + 130Λ)]
z1 . z2 = 14(cos 155Λ + i sin 155Λ)
Example 2 :
z1 = β2(cos 118Λ + i sin 118Λ)
z2 = 0.5(cos (-19Λ) + i sin (-19Λ)
Solution :
By using the z1 . z2 formula, we get
z1 . z2 = (β2 . (1/2))[cos (118Λ - 19Λ) + i sin (118Λ - 19Λ)]
z1 . z2 = (1/β2)(cos 99Λ + i sin 99Λ)
Example 3 :
z1 = 5(cos Ο/4 + i sin Ο/4)
z2 = 3(cos 5Ο/4 + i sin 5Ο/4)
Solution :
z1 . z2 = (5 . 3)[cos (Ο/4 + 5Ο/3) + i sin (Ο/4 + 5Ο/3)]
Taking the least common multiple, we get
z1 . z2 = 15[cos ((3Ο + 20Ο)/12) + i sin ((3Ο + 20Ο)/12)]
z1 . z2 = 15[cos (23Ο/12) + i sin (23Ο/12)]
Example 4 :
z1 = β3(cos 3Ο/4 + i sin 3Ο/4)
z2 = 1/3(cos Ο/6 + i sin Ο/6)
Solution :
z1 . z2 = (β3 . 1/3)[cos (3Ο/4 + Ο/6) + i sin (3Ο/4 + Ο/6)]
Taking the least common multiple, we get
z1 . z2 = (1/β3)[cos ((9Ο + 2Ο)/12) + i sin ((9Ο + 2Ο)/12)]
z1 . z2 = (1/β3)[cos (11Ο/12) + i sin (11Ο/12)
Write your answer in rectangular form when rectangular form is given and in polar form when polar form is given.
Example 5 :
(4 + 4i) (5 - 3i)
Solution :
(4 + 4i) (5 - 3i)
= 20 - 12i + 20i - 12i2
= 20 + 8i - 12(-1)
= 20 + 12 + 8i
= 32 + 8i
Example 6 :
4β2(cos 7Ο/4 + i sin 7Ο/4) β 2(cos Ο/6 + i sin Ο/6)
Solution :
4β2(cos 7Ο/4 + i sin 7Ο/4) β 2(cos Ο/6 + i sin Ο/6)
= 4β2(2) [cos (7Ο/4 + Ο/6) + i sin (7Ο/4 + Ο/6)]
= 8β2 [cos (21Ο + 2Ο)/4 + i sin (21Ο + 2Ο)/4]
= 8β2 [cos (23Ο/4) + i sin (23Ο/4)]
Example 7 :
[2β2(cos 7Ο/6 + i sin 7Ο/6)] / [6(cos 11Ο/6 + i sin 11Ο/6)]
Solution :
= [2β2(cos 7Ο/6 + i sin 7Ο/6)] / [6(cos 11Ο/6 + i sin 11Ο/6)]
= (2β2/6)[cos (7Ο/6 - 11Ο/6) + i sin (7Ο/6 - 11Ο/6)]
= (β2/3)[cos (7Ο - 11Ο)/6 + i sin (7Ο - 11Ο)/6]
= (β2/3)[cos (-4Ο/6) + i sin (-4Ο/6)]
= (β2/3)[cos (-2Ο/3) + i sin (-2Ο/3)]
Find the product of the complex numbers in polar form. Answer in both polar form and rectangular form.
Example 8 :
π§1 = 4(cos 225Β° + πsin 225Β°) and π§2 = 3(cos 90Β° + πsin 90Β°)
Solution :
Given that, π§1 = 4(cos 225Β° + πsin 225Β°)
π§2 = 3(cos 90Β° + πsin 90Β°)
π§1π§2 = 4(cos 225Β° + πsin 225Β°) β 3(cos 90Β° + πsin 90Β°)
= 4(3) [cos (225Β° + 90Β°) + i sin (225Β° + 90Β°)]
Polar form :
= 12 [cos 315Β° + i sin 315Β°]
Converting into rectangular form :
= 12 [cos (360 - 45) + i sin (360 - 45)]
= 12 [cos 45 + i sin 45]
= 12 [β2/2 + iβ2/2]
= 12 (1/2) (β2 + iβ2)
= 6 (β2 + iβ2)
Example 9 :
π§1 = β2(cos 2Ο/3 + π sin 2Ο/3) and π§2 = 1/5(cos Ο/6 + πsin Ο/6)
Solution :
Given that, π§1 = β2(cos 2Ο/3 + π sin 2Ο/3)
π§2 = 1/5(cos Ο/6 + πsin Ο/6)
= [β2(cos 2Ο/3 + π sin 2Ο/3)] β [1/5(cos Ο/6 + πsin Ο/6)]
= (β2/5) [cos (2Ο/3 + Ο/6) + i sin (2Ο/3 + Ο/6)]
= (β2/5) [cos (4Ο + Ο)/6 + i sin (4Ο + Ο)/6]
Polar form :
= (β2/5) [cos 5Ο/6 + i sin 5Ο/6]
Converting into rectangular form, we get
= (β2/5) [cos (Ο - Ο/6) + i sin (Ο - Ο/6)]
= (β2/5) [cos (Ο/6) + i sin (Ο/6)]
= (β2/5) [β3/2 + i (1/2)]
= (β2/5) [(β3 + i)/2]
Multiplying both numerator and denominator by β2
= (1/5) [(β3 + i)/β2]
Rectangular form :
= (β3 + i) / 5β2
Find the quotient of the complex numbers in polar form: π§1/π§2 Write the answer in both polar form and rectangular form.
Example 10 :
π§1 = 2(cos210Β° + πsin210Β°) and π§2 = 8(cos60Β° + πsin60Β°)
Solution :
π§1 = 2(cos 210Β° + πsin 210Β°) and π§2 = 8(cos 60Β° + πsin 60Β°)
π§1 / π§2 = (2/8) cos (cos 210Β° + πsin 210Β°)/(cos 60Β° + πsin 60Β°)
= (1/4)[cos (210 - 60) + i sin (210 - 60)]
= (1/4)[cos 150 + i sin 150]
= (1/4)[cos (180 - 30) + i sin (180 - 30)]
= (1/4)[cos 30 + i sin 30]
= (1/4)[β3/2 + i (1/2)]