ORDER AND DEGREE OF DIFFERENTIAL EQUATION PRACTICE PROBLEMS

Find the order and degree of the following differential equations.

(1)  (dy/dx) + y  =  x2

(2)  y' + y2  =  x

(3)  y'' + 3 (y')2 + y3

(4)  d2y/dx2 + x  =  √[y + (dy/dx)]

(5)  d2y/dx2 - y + (dy/dx + d3y/dx3)(3/2)  =  0

(6)  y''  =  (y - (y')3)(2/3)

(7)  y' + (y'')2  =  (x + y'')2

(8)  (dy/dx)2 + x = (dx/dy) + x2

Answers

(1)  Order  =  1 and degree  =  1.

(2)  Order  =  2 and degree  =  1.

(3)  Order  =  2 and degree  =  1.

(4)  Order  =  2 and degree  =  2.

(5)  Order  =  3 and degree  =  3.

(6)  Order  =  2 and degree  = 3.

(7)  Order  =  2 and degree  =  1.

(8)  Order  =  1 and degree  =  3.

Find the the following for the given differential equations.

(i) Order 

(ii) Degree

(iii) General solution

Problem 1 :

y' = 1 + x2 + y + x2y

Solution :

y' = 1 + x2 + y + x2y

i)  Order = 1

ii)  Degree = 1

iii) General solution :

(dy/dx) = (1 + x2) + y(1 + x2)

(dy/dx) = (1 + x2) (1 + y)

dy/(1 + y) = (1 + x2) dx

Integrating on both sides, we get

ln (1 + y) = x + (x3/3) + C

1 + y = ex + (x^3/3) + C

1 + y = ex + (x^3/3)  (eC)

1 + y = Cex + (x^3/3)

y = Cex + (x^3/3) - 1

Problem 2 :

y' = x/(y+ 1)

Solution :

y' = x/(y+ 1)

i)  Order = 1

ii)  Degree = 1

iii) General solution :

y' = x/(y+ 1)

dy/dx = x/(y+ 1)

dy (y2 + 1) = x dx

Integrating on both sides, we get

∫ dy (y2 + 1) = ∫ x dx

y3/3 + y = x2/2 + C

Problem 3 :

The order and degree of the differential equation

d2y/dx2 + (dy/dx)1/3 + x1/4 = 0

a) 2, 3    b) 3, 3    c) 2, 6     d)  2, 4

Solution :

d2y/dx2 + (dy/dx)1/3 + x1/4 = 0

The maximum number of times they find the derivative of y with respect to x is 2. So, the order is 2. But the variable x is having the rational exponent, so we cannot find the order and degree now.

x1/4 = -(d2y/dx2 + (dy/dx)1/3)

Raising power 4 on both sides,

x = [-(d2y/dx2 + (dy/dx)1/3]4

x = [(d2y/dx2 + (dy/dx)1/3]4

Order = 2 and degree = 4

So, option d is correct.

Problem 4 :

The differential equation representing the family of curves y = A cos (x + B), where A and B are parameters, is

a)  d2y/dx2 - y = 0     b)  d2y/dx2 + y = 0

c)  d2y/dx2 = 0     d)  d2y/dx2  = 0

Solution :

y = A cos (x + B) ----(1)

Since we have two parameters A and B, we have to find the derivative two times.

y'= A (-sin (x + B))(1 + 0)

y' = -A sin (x + B) -----(2)

y'' = -A cos (x + B) ------(3)

Applying (1), we get

y'' = -y

y'' + y = 0

d2y/dx2 + y = 0

So, option b is correct.

Problem 5 :

The order and degree of the differential equation 

√sin x (dx + dy) = √cos x (dx - dy) is

a)  1, 2      b)  2, 2     c)  1, 1     d)  2, 1

Solution :

√sin x (dx + dy) = √cos x (dx - dy) ----(1)

√sin x dx + √sin x dy = √cos x dx - √cos x dy

√sin x dy + √cos x dy = √cos x dx - √sin x dx

(√sin x + √cos x) dy = (√cos x - √sin x) dx

dy/dx = (√cos x - √sin x)/(√sin x + √cos x)

The maximum number of times derivative is done = 1

highest exponent = 1

So, option c is correct.

Problem 6 :

The order of the differential equation of all circles with center at (h, k) and radius a is 

a)  2    b)  3     c)  4    d)  1

Solution :

Equation of circle with center (h, k) and radius a is

(x - h)2  + (y - h)2 = a2

The equation is differentiable twice since we have two parameters.

So, the order of the differential equation will be 2.

Problem 7 :

The differential equation of the family of curves 

y = Aex + Be-x 

where A and B are arbitrary constants is 

a)  d2y/dx2 + y = 0     b)  d2y/dx2 - y = 0

c)  dy/dx + y = 0     d)  dy/dx - y = 0

Solution :

y = Aex + Be-x  -----(1)

y' = Aex - Be-x  -----(2)

y'' = Aex - Be-x (-1)

y'' = Aex + Be-x  -----(3)

Applying (1), we get

y'' = y

y'' - y = 0

 d2y/dx2 - y = 0

So, option b is correct.

Problem 8 :

The solution of the differential equation 

2x (dy/dx) - y = 3

represents

a) straight lines   b) circles     c) parabola   d) ellipse

Solution :

2x (dy/dx) - y = 3

2x (dy/dx) = y + 3

dy/(y+3) = dx/2x

Integrating both sides, we get

log(y + 3) = (1/2) log x

(y + 3) = √x

Raising power 2 on both sides, we get

(y + 3)2 = x 

So, the general solution must be a parabola.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 180)

    Jun 07, 25 09:17 PM

    digitalsatmath239.png
    Digital SAT Math Problems and Solutions (Part - 180)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 176)

    Jun 06, 25 07:10 PM

    digitalsatmath229.png
    Digital SAT Math Problems and Solutions (Part - 176)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 179)

    Jun 06, 25 09:14 AM

    digitalsatmath238.png
    Digital SAT Math Problems and Solutions (Part - 179)

    Read More