Subscribe to our ā¶ļø YouTube channel š“ for the latest videos, updates, and tips.
To multiply the complex numbers, we can use the distributive multiplication method.

Since i2 = -1
= ac + adi + bci + bd(-1)
= ac + adi + bci ā bd
= ac ā bd + (ad + bc)i
Write the product in standard form :
Example 1 :
(2 + 3i)(2 ā i)
Solution :
(2 + 3i)(2 ā i) = 2(2) ā 2(i) + 3i(2) ā 3i(i)
= 4 ā 2i + 6i ā 3i2
= 4 + 4i ā 3(-1)
= 4 + 4i + 3
= 7 + 4i
So, the standard form is 7 + 4i
Example 2 :
(2 - i)(1 + 3i)
Solution :
(2 - i)(1 + 3i) = 2(1) + 2(3i) - i(1) ā i(3i)
= 2 + 6i - i ā 3i2
= 2 + 5i ā 3(-1)
= 2 + 5i + 3
= 5 + 5i
So, the standard form is 5 + 5i
Example 3 :
(1 - 4i)(3 - 2i)
Solution :
(1 - 4i)(3 - 2i) = 1(3) ā 1(2i) - 4i(3) + 4i(2i)
= 3 - 2i - 12i + 8i2
= 3 - 14i + 8(-1)
= 3 - 14i - 8
= -5 - 14i
So, the standard form is -5 - 14i
Example 4 :
(5i - 3)(2i + 1)
Solution :
(5i - 3)(2i + 1) = 5i(2i) + 5i(1) - 3(2i) - 3(1)
= 10i2 + 5i - 6i - 3
= 10(-1) + 5i ā 6i - 3
= -10 + 5i ā 6i - 3
= -13 - i
So, the standard form is -13 ā i
Example 5 :
(7i - 3)(2 + 6i)
Solution :
(7i - 3)(2 + 6i) = 7i(2) + 7i(6i) - 3(2) - 3(6i)
= 14i + 42i2 - 6 ā 18i
= 14i + 42(-1) ā 6 ā 18i
= -4i - 42 ā 6
= -4i ā 48
= -48 ā 4i
So, the standard form is -48 ā 4i
Example 6 :
(ā-4 + i)(6 - 5i)
Solution :
(ā-4 + i)(6 - 5i) = ā-4(6) - ā-4(5i) + i(6) - i(5i)
= 6ā-4 ā 5iā-4 + 6i ā 5i2
Since i = ā-1
= 6i(2) - 5i(i)(2) + 6i ā 5(-1)
= 12i ā 10i2 + 6i + 5
= 18i ā 10(-1) + 5
= 18i + 10 + 5
= 18i + 15
= 15 + 18i
So, the standard form is 15 + 18i
Example 7 :
(-3 - 4i)(1 + 2i)
Solution :
(-3 - 4i)(1 + 2i) = -3(1) - 3(2i) - 4i(1) ā 4i(2i)
= -3 - 6i - 4i ā 8i2
= -3 - 10i ā 8(-1)
= -3 - 10i + 8
= 5 - 10i
So, the standard form is 5 - 10i
Example 8 :
(ā-2 + 2i)(6 + 5i)
Solution :
(ā-2 + 2i)(6 + 5i) = ā-2(6) + ā-2(5i) + 2i(6) + 2i(5i)
= 6ā-2 + 5iā-2 + 12i + 10i2
Since i = ā-1
= 6iā2 + 5i(i)ā2 + 12i + 10(-1)
= 6ā2i + 5ā2i2 + 12i - 10
= 6ā2i + 5ā2(-1) + 12i - 10
= 6ā2i - 5ā2 + 12i ā 10
By combining like terms, we get
= 6ā2i + 12i - 5ā2 ā 10
= -5ā2 ā 10 + (6ā2 + 12)i
So, the standard form is -5ā2 ā 10 + (6ā2 + 12)i
Example 9 :
(3 + 3i)(1 + 4i)(ā2 + 3i)
Solution :
(3 + 3i)(1 + 4i)(ā2 + 3i)
(3 + 3i)(1 + 4i) = 3 + 12i + 3i + 12i2
= 3 + 15i + 12(-1)
= 3 + 15i - 12
= -9 + 15i
(3 + 3i)(1 + 4i)(ā2 + 3i) = (-9 + 15i) (ā2 + 3i)
= 18 - 27i - 30i + 45i2
= 18 - 45 - 3i
= -27 - 3i
Example 10 :
(4 + 3i)(ā2 ā 3i)(1 ā i)
Solution :
= (4 + 3i)(ā2 ā 3i)(1 ā i)
(4 + 3i)(ā2 ā 3i) = -8 - 6i - 6i - 9i2
= -8 - 12i + 9
= 1 - 12i
(4 + 3i)(ā2 ā 3i)(1 ā i) = (1 - 12i)(1 - i)
= 1 - i - 12i + 12i2
= 1 - 13i + 12(-1)
= 1 - 12 - 13i
= -11 - 13i
Example 11 :
ā3(ā3 ā 4i) + 3(āi)
Solution :
= ā3(ā3 ā 4i) + 3(āi)
= 9 + 12i - 3i
= 9 + 9i
Example 12 :
(ā3 ā 4i)2
Solution :
= (ā3 ā 4i)2
= (3 + 4i)2
Looks like the formula (a + b)2
= a2 + 2ab + b2
= 32 + 2(3)(4i) + (4i)2
= 9 + 24i - 16
= -7 + 24i
Example 13 :
ā4(ā5 ā 2i) + 2(ā3 + 5i)
Solution :
= ā4(ā5 ā 2i) + 2(ā3 + 5i)
Distributing -4 and 2, we get
= 20 + 8i - 6 + 10i
= 14 + 18i
Example 13 :
(5 + i)2
Solution :
(5 + i)2
(a + b)2 = a2 + 2ab + b2
= 52 + 2(5)i + i2
= 25 + 10i - 1
= 24 + 10i
Example 14 :
(5i)( ā5 + i) + 4( 5 ā i) 16) ( ā2 + 5i)
Solution :
= (5i)( ā5 + i) + 4(5 ā i)
= -25i + 5i2 + 20 - 4i
combining the like terms, we get
= -25i - 5 + 20 - 4i
= -29i + 15
Subscribe to our ā¶ļø YouTube channel š“ for the latest videos, updates, and tips.
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Nov 28, 25 09:55 AM
Nov 26, 25 09:03 AM
Nov 21, 25 09:03 AM