HOW TO FIND THE MISSING COORDINATES IF THREE POINTS LIE ON THE LINE

Here we are going to see, how to find the missing coordinates if three points lie on the same line.

Slope :

If (x1,y1) and (x2,y2) are any two points on a line, with x1x2, then the slope of the line is

(y2 − y1) / (x2 − x1)

We will get the same slope for any two points lie on the same line.

Practice Questions

Question 1 :

Find a number t such that the point (−2, t) is on the line containing the points (5,−2) and (10,−8).

Answer :

Slope of the line passing through the points (-2, t) and (5, -2)  =  Slope of the line passing through the points (5, -2) and (10, -8).

Slope m  =  (y2 - y1)/ (x2 - x1)

(x1, y1)  ==>  (-2, t) and (x2, y2)  ==> (5, -2)  

m  =  (-2 - t)/(5 + 2)

m  =  (-2 - t)/7  ----(1)

(x1, y1)  ==>  (5, -2) and (x2, y2)  ==> (10, -8)  

m  =  (-8 + 2)/(10 - 5)

m  =  -6/5 ----(2)

-(2 + t)/7  =  -6/5

5(2 + t)  =  42

10 + 5t  =  42

5t  =  42 - 10

5t  =  32

t  =  32/5

Question 2 :

Find a number t such that the point (t, 2t) is on the line containing the points (3,−7) and (5,−15).

Answer :

Slope m  =  (y2 - y1)/ (x2 - x1)

(x1, y1)  ==>  (t, 2t) and (x2, y2)  ==> (3, -7)  

m  =  (-7 - 2t)/(3 - t) ---(1)

(x1, y1)  ==>  (3, -7) and (x2, y2)  ==> (5, -15)  

m  =  (-15 + 7)/(5 - 3)

m  =  -8/2

m  =  -4----(2)

(-7 - 2t)/(3 - t)  =  4

-7 - 2t  =  4(3 - t)

-7 - 2t  =  6 - 4t

-2t + 4t  =  6 + 7

2t  =  13

t  =  13/2

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. 10 Hard SAT Math Questions (Part - 20)

    Sep 25, 25 08:27 AM

    10 Hard SAT Math Questions (Part - 20)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 250)

    Sep 24, 25 12:44 PM

    digitalsatmath388.png
    Digital SAT Math Problems and Solutions (Part - 250)

    Read More

  3. 10 Hard SAT Math Questions (Part - 19)

    Sep 23, 25 12:14 PM

    digitalsatmath385.png
    10 Hard SAT Math Questions (Part - 19)

    Read More