HOW TO FIND THE DOMAIN AND RANGE OF A FUNCTION

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Domain :

Let y  =  f(x) be a function.

Domain is all real values of x for which y is defined.

If there is any value of x for which y is undefined, we have to exclude that particular value from the set of domain. 

For example, let us consider the function

f(x)  =  (3x - 2)/(x2 - 1)

The above function accepts all real values except -1 and 1.If we apply x = 1 and -1, the function will become meaningless.

So, the domain of the given function is R - {-1, 1}

Range :

Let y  =  f(x) be a function.

Range is all real values of y for the given domain (real values of x). 

Let us look at some examples to understand how to find domain and range of a function. 

Example 1 :

Find the domain and range of the following function

f(x)  =  x / (1 + x2)

Solution :

Domain of the function f (x) :

f(x)  =  x / (1 + x2)

The denominator will never become zero for any values of x.

Thus f(x) accepts all real values of x.

Hence the domain of the given function is R.

Domain of the function f (x) :

y  =  x / (1 + x2)

(1 + x2)  = x 

y + yx = x

x2y - x + y = 0

Solving for x, we get

x = 1 ± √(1 - 4y2) / 2y

Clearly, x will assume real values if 

1 - 4y≥ 0 and y ≠ 0

4y2 - 1 ≤ 0 and ≠ 0

Divide by 4 on both sides

y2 - 1/4 ≤ 0

y2 - (1/2)≤ 0

(y - 1/2) (y + 1/2) ≤ 0 and ≠ 0

-1/2 ≤ y ≤ 1/2 and ≠ 0

∈ [-1/2, 1/2] - {0}

But, in the original function y = x / (1 + x2), y = 0 for x = 0.

So we have to include "0" in the range.  

Hence, the range of f (x) is [-1/2, 1/2].

Example 2 :

Find the domain and range of the following function

f(x)  =  3 / (2 - x2)

Solution :

Domain of the function f (x) :

f(x)  =  3 / (2 - x2)

To find domain, we need to find out for what values of x the denominator will become zero.

2 - x2 = 0

Subtract 2 on both sides

2 - x2 - 2  = 0 - 2

- x  = - 2  ===> x = ± √2

From this, we come to know that the values √2 and -√2 will make the denominator zero.

Hence the domain is R - {± √2}

Range of the function f(x) :

y  =  3 / (2 - x2)

y (2 - x2)  =  3

2y - x2 y = 3

2y - 3 = xy

x2   =  (2y- 3)/y  ==> x = √((2y- 3)/y)

√((2y- 3)/y) ≥ 0

y = 3/2 will make the above term as zero.

From the above number line, we can split it into three parts.

 (-∞, 0) , (0, 3/2], [3/2, ∞) 

Now we need to apply the values from each intervals. The intervals which satisfies the above condition will be the range.

The values from the intervals  (-∞, 0), [3/2, ∞) satisfies the above condition.

So, the range of f(x) is 

(-∞, 0) U [3/2, ∞)

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

onlinemath4all_official_badge.png

Recent Articles

  1. 10 Hard SAT Math Questions (Part - 40)

    Dec 25, 25 08:30 AM

    digitalsatmath422.png
    10 Hard SAT Math Questions (Part - 40)

    Read More

  2. 10 Hard SAT Math Questions (Part - 41)

    Dec 24, 25 07:58 PM

    digitalsatmath423.png
    10 Hard SAT Math Questions (Part - 41)

    Read More

  3. ASTC Formula in Trigonometry

    Dec 23, 25 11:34 PM

    astc1
    ASTC Formula in Trigonometry - Concepts - Examples and Solved Problems

    Read More