HOW TO FIND THE POINT OF INTERSECTION OF TWO LINES WITHOUT GRAPHING

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

If two straight lines are not parallel then they will meet at a point. This common point for both straight lines is called the point of intersection.

If the equations of two intersecting straight lines are given,then their intersecting point is obtained by solving equations simultaneously.

Example 1 :

Find the intersection point of the straight lines

2x - 3y  =  6 and x + y  =  3

Solution :

2x - 3y  =  6    -----(1)

(2)  3 ==>3x + 3y = 9

2x - 3y  =  6  

3x + 3y  =  9

------------

5x  =  15

x  =  15/5

x  =  3

By applying x = 3 in (1), we get

2(3) - 3y  =  6

6 - 3y  =  6 

-3y  =  0

y  =  0

So the point of intersection of the given straight lines is (3, 0).

Example 2 :

Find the intersection point of the straight lines

3x + 5y  =  6 and 5x - y  =  10

Solution :

Now we need to solve both the equation.

3x + 5y  =  6    -----(1)

5x - y  =  10     -----(2)

  (2)  5 ==> 25x - 5y = 50

3x + 5y  =  6

25x - 5y  =  50 

-------------------

28x  =  56

x  =  2

by applying x  =  2 in (1), we get

3(2) + 5y  =  6

6 + 5y  =  6 

5y  =  6 - 6

5y  =  0

y  =  0

So the answer is  (2, 0).

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

onlinemath4all_official_badge1.png

Recent Articles

  1. 10 Hard SAT Math Questions

    Feb 02, 26 12:21 AM

    10 Hard SAT Math Questions

    Read More

  2. Challenging SAT Math Questions

    Feb 02, 26 12:05 AM

    Challenging SAT Math Questions

    Read More

  3. AP Precalculus Problems and Solutions

    Jan 31, 26 07:47 PM

    precalculus.png
    AP Precalculus Problems and Solutions

    Read More