HOW TO FIND THE POINT OF INTERSECTION OF TWO LINES WITHOUT GRAPHING

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

If two straight lines are not parallel then they will meet at a point. This common point for both straight lines is called the point of intersection.

If the equations of two intersecting straight lines are given,then their intersecting point is obtained by solving equations simultaneously.

Example 1 :

Find the intersection point of the straight lines

2x - 3y  =  6 and x + y  =  3

Solution :

2x - 3y  =  6    -----(1)

(2)  3 ==>3x + 3y = 9

2x - 3y  =  6  

3x + 3y  =  9

------------

5x  =  15

x  =  15/5

x  =  3

By applying x = 3 in (1), we get

2(3) - 3y  =  6

6 - 3y  =  6 

-3y  =  0

y  =  0

So the point of intersection of the given straight lines is (3, 0).

Example 2 :

Find the intersection point of the straight lines

3x + 5y  =  6 and 5x - y  =  10

Solution :

Now we need to solve both the equation.

3x + 5y  =  6    -----(1)

5x - y  =  10     -----(2)

  (2)  5 ==> 25x - 5y = 50

3x + 5y  =  6

25x - 5y  =  50 

-------------------

28x  =  56

x  =  2

by applying x  =  2 in (1), we get

3(2) + 5y  =  6

6 + 5y  =  6 

5y  =  6 - 6

5y  =  0

y  =  0

So the answer is  (2, 0).

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Specifying Units of Measure

    Dec 15, 25 07:09 PM

    Specifying Units of Measure

    Read More

  2. Quantitative Reasoning Questions and Answers

    Dec 14, 25 06:42 AM

    Quantitative Reasoning Questions and Answers

    Read More

  3. Coin Tossing Probability

    Dec 13, 25 10:11 AM

    Coin Tossing Probability - Concept - Sample Space - Formula - Solved Problems

    Read More