HOW TO CHECK IF THE GIVEN POINTS ARE VERTICES OF RECTANGLE

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

(i) In a rectangle the length of opposite sides will be equal.

(ii) The rectangle can be divided into two right triangles.

(iii) If the given four vertices satisfies those conditions we can say the given vertices forms a rectangle.

Question 1 :

Examine whether the given points 

A(-3,2), B(4,2),  C (4,-3) and D (-3,-3)

forms a rectangle.

Solution :

Distance Between Two Points (x1, y1) and (x2 , y2)

√(x2 - x1)2 + (y2 - y1)2

Length of AB :

Here x1 = -3, y1 = 2, x2 = 4  and  y2 = 2

=  √(4-(-3))2 + (2-2)2

=  √(4+3)2 

=  √49

=  7 units

Length of BC :

Here x1 = 4, y1 = 2, x2 = 4  and  y2 = -3

=  √(4-4)² + (-3-2)²

=  √(-5)²

=  √25

=  5 units

Length of CD :

Here x1 = 4, y1 = -3, x2 = -3 and  y2 = -3

=  √(-3-4)² + (-3-(-3))²

=  √(-7)² + (-3+3)²

=  √49 + 0

=  7 units

Length of DA :

Here x1 = -3, y1 = 2, x2 = -3 and  y2 = 2

=  √(-3-(-3))2 + (2-(-3))2

=  √(-3+3)2 + (2+3)2

=  √0 + 52

=  5 units

Length of AC :

Here x1 = -3, y1 = 2, x2 = 4 and  y2 = -3

=  √(4-(-3))2 + (-3-2)2

=  √(4+3)2 + (-5)2

=  √72 + 52

=  √(49+25)

=  √74 units

In triangle ABC,

AC2  =  AB2 + BC2

√742  =  72 + 52

74  =  49 + 25

74  =  74

So, the given points are vertices of rectangle.

Question 2 :

Examine whether the given points 

P(8, 3) Q(0, -1) R(-2, 3) and S(6, 7)

forms a rectangle.

Solution :

Length of PQ :

Here x1 = 8, y1 = 3, x2 = 0 and  y2 = -1

=  √(0-8)2 + (-1-3)2

=  √(-8)2 + (-4)2

=  √(64+16)

=  √80

Length of QR :

Here x1 = 0, y1 = -1, x2 = -2 and  y2 = 3

=  √(-2-0)2 + (3-(-1))2

=  √(-2)² + (3+1)²

=  √4 + 16

=  √20 units

Length of RS :

Here x1 = -2, y1 = 3, x2 = 6 and  y2 = 7

=  √(6-(-2))2 + (7-3)2

=  √(6+2)2 + 42

=  √(64+16)

=  √80 units

Length of SP :

Here x1 = 6, y1 = 7, x2 = 8 and  y2 = 3

=  √(8-6)2 + (3-7)2

=  √22 + (-4)2

=  √(4+16)

=  √20 units

Length of PR :

Here x1 = 0, y1 = -1, x2 = 6 and  y2 = 7

=  √(6-0)2 + (7-(-1))2

=  √36 + 8²

=  √36 + 64

=  √100 units

In triangle QPS,

QS2  =  QP2 + PS2

√1002  =  √802 + √202

100  =  80 + 20

100  =  100

So the given vertices forms a rectangle.

Apart from the stuff given in this section, if you need any other stuff in math, please use our google custom search here.

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

onlinemath4all_official_badge.png

Recent Articles

  1. 10 Hard SAT Math Questions (Part - 40)

    Dec 25, 25 08:30 AM

    digitalsatmath422.png
    10 Hard SAT Math Questions (Part - 40)

    Read More

  2. 10 Hard SAT Math Questions (Part - 41)

    Dec 24, 25 07:58 PM

    digitalsatmath423.png
    10 Hard SAT Math Questions (Part - 41)

    Read More

  3. ASTC Formula in Trigonometry

    Dec 23, 25 11:34 PM

    astc1
    ASTC Formula in Trigonometry - Concepts - Examples and Solved Problems

    Read More