GRADIENT OF A STRAIGHT LINE WORKSHEET

Problem 1 :

Find the angle of inclination of the straight line whose gradient is 1/√3.

Problem 2 :

Find the gradient of the straight line passing through the points (3, -2) and (-1, 4). 

Problem 3 :

Using the concept of gradient, show that the points A(5, -2), B(4, -1) and C(1, 2) are collinear.

Problem 4 :

Find the gradient of the line 3x - 2y + 7 = 0. 

Problem 5 :

If the straight line 5x + ky - 1 = 0 has the gradient 5, find the value of 'k'.  

Solutions

Problem 1 :

Find the angle of inclination of the straight line whose gradient is 1/√3.

Solution :

Let θ be the angle of inclination of the line. 

Then, gradient of the line,  m  = tan θ.

Given : Gradient  =  1/√3.

So, we have 

tan θ  =  1/√3

θ  =  30°

So, the angle of inclination is 30°.

Problem 2 :

Find the gradient of the straight line passing through the points (3, -2) and (-1, 4). 

Solution :

Let (x1, y1)  =  (3, -2) and (x2, y2)   =  (-1, 4)

Then, the formula to find the gradient, 

m  =  (y2 - y1) / (x2 - x1)

Plug (x₁, y₁)  =  (3, -2) and (x₂, y₂)   =  (-1, 4)

m  =  (4 + 2) / (-1 - 3)

m  =  - 6 / 4

m  =  - 3 / 2

So, the gradient is -3/2.

Problem 3 :

Using the concept of gradient, show that the points A(5, -2), B(4, -1) and C(1, 2) are collinear.

Solution :

Slope of the line joining (x1, y1) and (x2, y2) is, 

m  =  (y2 - y1) / (x2 - x1)

Using the above formula,

Gradient of the line AB joining the points A (5, - 2) and B (4- 1) is 

 =  (-1 + 2) / (4 - 5)

=  - 1

Gradient of the line BC joining the points B (4- 1) and C (1, 2) is 

 =  (2 + 1) / (1 - 4)

=  - 1

Thus,

gradient of AB  =  gradient of BC

Also, B is the common point.

So, the points A , B and C are collinear.

Problem 4 :

Find the gradient of the line 3x - 2y + 7 = 0. 

Solution :

When the general form of equation of a straight line is given, the formula to find gradient is

m  =  -  coefficient of x / coefficient of y 

In the given line 3x - 2y + 7 = 0,

coefficient of x  = 3 and coefficient of y  =  - 2

Gradient,  m  =  (-3) / (-2)  =  3/2 

So, the gradient of the given line is 3/2. 

Problem 5 :

If the straight line 5x + ky - 1 = 0 has the gradient 5, find the value of 'k'.  

Solution :

When the general form of equation of a straight line is given, the formula to find gradient is

m  =  -  coefficient of x / coefficient of y 

In the given line 3x - 2y + 7 = 0,

coefficient of x  = 3 and coefficient of y  =  k

Slope,  m  =  -5 / k

Given : Gradient  =  5

So, we have  5  =  -5/k

5k  =  -5

k  =  -1

So, the value of 'k' is  -1. 

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math : Factoring with Difference of Two Squares

    Sep 03, 25 12:30 PM

    Digital SAT Math : How to factor and simplify expressions using difference of two squares

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 271)

    Aug 31, 25 07:25 AM

    Digital SAT Math Problems and Solutions (Part - 271)

    Read More

  3. Digital SAT Math Problems and Solutions (part - 270)

    Aug 30, 25 04:19 AM

    digitalsatmath378.png
    Digital SAT Math Problems and Solutions (part - 270)

    Read More