FINDING ORDER AND DEGREE OF DIFFERENTIAL EQUATION

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

The order of a differential equation depends on the derivative of the highest order in the equation.

The degree of a differential equation, similarly, is determined by the highest exponent on any variables involved.

Find the order and degree of the following differential equations.

(1)  (dy/dx) + y  =  x2

(2)  y' + y2  =  x

(3)  y'' + 3 (y')2 + y3

(4)  d2y/dx2 + x  =  √[y + (dy/dx)]

(5)  d2y/dx2 - y + (dy/dx + d3y/dx3)(3/2)  =  0

(6)  y''  =  (y - (y')3)(2/3)

(7)  y' + (y'')2  =  (x + y'')2

(8)  (dy/dx)2 + x = (dx/dy) + x2

Problem 1 :

(dy/dx) + y  =  x2

Solution :

By differentiating y with respect to x, we get dy/dx and its highest exponent is 1. So, order  =  1 and degree  =  1.

Order  =  1,  Degree  =  1.

Problem 2 :

y' + y2  =  x

Solution :

By differentiating y with respect to x, we get y' and its highest exponent is 1. So, order  =  1 and degree  =  1.

Problem 3 :

y'' + (3y')2 + y3

Solution :

By differentiating y with respect to x two times, we get y''. So, order  =  2 and degree  =  1.

Problem 4 :

d2y/dx2 + x  =  √[y + (dy/dx)]

Solution :

d2y/dx2 + x  =  √[y + (dy/dx)]

Take squares on both sides.

(d2y/dx2 + x)2  =  [y + (dy/dx)]

By differentiating y with respect to x two times, we get d2y/dx2. So, order  =  2 and degree  =  2.

Problem 5 :

d2y/dx2 - y + (dy/dx + d3y/dx3)(3/2)  =  0

Solution :

d2y/dx2 - y + (dy/dx + d3y/dx3)(3/2)  =  0

d2y/dx2 - y  =  (dy/dx + d3y/dx3)(3/2)

Take squares on both sides

(d2y/dx2 - y)2  =  (dy/dx + d3y/dx3)3

So, order  =  3 and degree  =  3.

Problem 6 :

y''  =  (y - (y')3)(2/3)

Solution :

y''  =  (y - (y')3)(2/3)

Take cubes on both sides.

(y'')3  =  (y - (y')3)2

So, order is 2 and degree is 3.

Problem 7 :

y' + (y'')2  =  (x + y'')2

Solution :

y' + (y'')2  =  (x + y'')2

y' + (y'')2  =  x2 + (y'')2 + 2xy''

x2- 2xy''-y'  =  0

So, the order is 2 and degree is 1.

Problem 8 :

(dy/dx)2 + x  =  (dx/dy) + x2

Solution :

(dy/dx)2 + x  =  (dx/dy) + x2

(dy/dx)2 + x  =  [1/(dy/dx)] + x2

(dy/dx)3 + x(dy/dx)  =  =  1 + x2(dy/dx)

So, the order is 1 and degree is 3.

Apart from the stuff given in this section, if you need any other stuff in math, please use our google custom search here. 

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Quantitative Reasoning Questions and Answers

    Dec 14, 25 06:42 AM

    Quantitative Reasoning Questions and Answers

    Read More

  2. Specifying Units of Measure

    Dec 14, 25 06:38 AM

    Specifying Units of Measure

    Read More

  3. Coin Tossing Probability

    Dec 13, 25 10:11 AM

    Coin Tossing Probability - Concept - Sample Space - Formula - Solved Problems

    Read More