FIND THE SLOPE OF A LINEAR FUNCTION

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Slope of a linear function is the change in y for a unit change in x along the line and usually denoted by the letter "m"

Slope is sometimes referred to as "rise over run".

Because the fraction consists of the rise (the change in y, going up or down) divided by the run (the change in x, going from left to the right).

The figure shown below illustrated this. 

Finding Slope Using the Two Points on the Line

From the above figure, the slope of the straight line joining the points A (x1, y1) and B (x2, y2) is   

Examples

Example 1 :

Find the slope of the line shown below.

Solution :

The above line is a rising line.

So, its slope will be a positive value.

Plot the two points (-2, 0) and (0, 4) on the line and measure the rise and run. 

For the above line, 

Rise  =  4

Run  =  2

Then, slope is 

m  =  rise / run

m  =  4/2

m  =  2

Alternative Method : 

Formula to find slope is

m  =  (y- y1) / (x- x1)

Substitute (x1, y1)  =  (-2, 0) and (x2y2)  =  (0, 4) 

m  =  (4 - 0) / (0 + 2)

m  =  4/2

m  =  2

Example 2 :

Find the slope of the line shown below.

Solution :

The above line is a rising line line.

So, its slope will be a positive value.

Plot the two points (1, -1) and (2, 1) on the line and measure the rise and run. 

For the above line, 

Rise  =  2

Run  =  1

Then, slope is 

m  =  rise / run

m  =  2/1

m  =  2

Alternative Method : 

Formula to find slope is

m  =  (y- y1) / (x- x1)

Substitute (x1, y1)  =  (1, -1) and (x2y2)  =  (2, 1) 

m  =  (1 + 1) / (2 - 1)

m  =  2/1

m  =  2

Example 3 :

Find the slope of the line shown below.

Solution :

The above line is a rising line line.

So, its slope will be a positive value.

Plot the two points (-2, -2) and (-1, 3) on the line and measure the rise and run. 

For the above line, 

Rise  =  5

Run  =  2

Then, slope is 

m  =  rise / run

m  =  5/1

m  =  5

Alternative Method : 

Formula to find slope is

m  =  (y- y1) / (x- x1)

Substitute (x1, y1)  =  (-2, -2) and (x2y2)  =  (-1, 3) 

m  =  (3 + 2) / (-1 + 2)

m  =  5/1

m  =  5

Example 4 :

Find the slope of the line shown below.

Solution :

The above line is a rising line line.

So, its slope will be a positive value.

Plot the two points (0, -3) and (1, 4) on the line and measure the rise and run. 

For the above line, 

Rise  =  7

Run  =  1

Then, slope is 

m  =  rise / run

m  =  7/1

m  =  7

Alternative Method : 

Formula to find slope is

m  =  (y- y1) / (x- x1)

Substitute (x1, y1)  =  (0, -3) and (x2y2)  =  (1, 4) 

m  =  (4 + 3) / (1 - 0)

m  =  7/0

m  =  7

Example 5 :

Solution :

The above line is a rising line line.

So, its slope will be a positive value.

Plot the two points (0, 2) and (5, 0) on the line and measure the rise and run. 

Since it is falling line, it will have negative slope.

For the above line, 

Rise  =  2

Run  =  5

Then, slope is 

m  =  rise / run

m  =  -2/5

Alternative Method : 

Formula to find slope is

m  =  (y- y1) / (x- x1)

Substitute (x1, y1)  =  (0, 2) and (x2y2)  =  (5, 0) 

m  =  (0 - 2) / (5 - 0)

m  =  -2/5

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

onlinemath4all_official_badge.png

Recent Articles

  1. 10 Hard SAT Math Questions (Part - 40)

    Dec 25, 25 08:30 AM

    digitalsatmath422.png
    10 Hard SAT Math Questions (Part - 40)

    Read More

  2. 10 Hard SAT Math Questions (Part - 41)

    Dec 24, 25 07:58 PM

    digitalsatmath423.png
    10 Hard SAT Math Questions (Part - 41)

    Read More

  3. ASTC Formula in Trigonometry

    Dec 23, 25 11:34 PM

    astc1
    ASTC Formula in Trigonometry - Concepts - Examples and Solved Problems

    Read More