FIND THE AREA OF THE REGION ENCLOSED BY THE GIVEN CURVES

Example 1 :

Find the area of the region described.

The region bounded by y = 4(x + 1), y = 5(x + 1) and x  =  3

Solution :

x-intercepts and y-intercepts of  y = 4(x + 1)

x-intercept

y  =  0

x + 1  =  0

x  =  -1

(-1, 0)

y-intercept

x  =  0

y  =  4(0 + 1)

y  =  4

(0, 4)

x-intercepts and y-intercepts of  y = 5(x + 1)

x-intercept

y  =  0

x + 1  =  0

x  =  -1

(-1, 0)

y-intercept

x  =  0

y  =  5(0 + 1)

y  =  5

(0, 5)

Required area :

  =  (9/2 + 3) - (1/2 - 1)

  =  (15/2) - (-1/2)

  =  (15 + 1)/2

  =  16/2

  =  8

Example 2 :

Find the area of the region in the first quadrant bounded by the line y  =  2x, the line x  =  4 the curve y  =  2/x, and the x-axis.

Solution :

  =  (1 - 0) + 2(log 4 - log 1)

  =  1 + 2 (log4 - 0) 

  =  1 + log 16

Example 3 :

Find the area of the region bounded by y  =  √(2x), y  =  2x - 2 and y  =  0.

Solution :

  =  (2√2/3) (2)3/2 - 4 + 4

  =  8/3

So, the required area is 8/3.   

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. 10 Hard SAT Math Questions (Part - 14)

    Sep 17, 25 09:38 AM

    digitalsatmath383.png
    10 Hard SAT Math Questions (Part - 14)

    Read More

  2. 10 Hard SAT Math Questions (Part - 13)

    Sep 14, 25 09:32 PM

    digitalsatmath364.png
    10 Hard SAT Math Questions (Part - 13)

    Read More

  3. 10 Hard SAT Math Questions (Part - 12)

    Sep 12, 25 09:50 PM

    10 Hard SAT Math Questions (Part - 12)

    Read More