Understanding the graphs of rational functions is sometimes a difficult stuff for some student who study math in both school level and college level.

Actually, it is not a difficult one. We can understand the graphs of rational functions when we explore them in a proper way.

To explore the graphs of rational functions, let us consider the example which is given below.

In the process of exploring graphs of rational functions, first we have to know the following stuff.

To know more about the above mentioned stuff, please click the topics given above.

If you had already learned the above mentioned stuff, then you are ready to learn the stuff, "How to graph rational functions".

Now let us take an example and explore the graphs of rational functions.

**Example : **

Graph the rational function given below.

y = (2x + 1) / (x - 1)

**Solution :**

**Step 1 :**

First, we have to find hole, if any.

To find hole of the rational function, we have to see whether there is any common factor found at both numerator and denominator.

In our problem, clearly there is no common factor found at both numerator and denominator.So, there is no hole.

**Step 2 :**

Now, we have to find vertical asymptote, if any.

Most of the rational function will have vertical asymptote.

To find vertical asymptote, we have to make the denominator equal to zero.

When we do so, x - 1 = 0 ====> x = 1

So, the vertical asymptote is ** x = 1**

**Step 3 :**

Now we have to find horizontal asymptote, if any.

In the rational function given above, the highest exponent of the numerator and denominator are equal. So there is an horizontal asymptote.

Equation of the horizontal asymptote:

y = a/b

Here 'a' and 'b' are the coefficients of highest exponent terms at the numerator and denominator respectively.

In our problem, a = 2 and b = 1

So, horizontal asymptote is

y = 2/1

y = 2

**Step 4 :**

Now we have to find slant asymptote, if any.

Since there is horizontal asymptote, there is no slant asymptote.

**Step 5 :**

In the given rational function, now we have to plug some random values for x and find the corresponding values of y.

We have already known that the vertical asymptote is

x = 1

Now, we have to take some random values for x on the left side of x = 1 as well as right side of x = 1 (as given in the table below).

That is,** **

x < 1 and x > 1 but x ≠ 1

(Because, x = 1 is vertical asymptote)

Apart from the stuff given above, if you need any other stuff, please use our google custom search here.

HTML Comment Box is loading comments...

You can also visit the following web pages on different stuff in math.

**WORD PROBLEMS**

**Word problems on simple equations **

**Word problems on linear equations **

**Word problems on quadratic equations**

**Area and perimeter word problems**

**Word problems on direct variation and inverse variation **

**Word problems on comparing rates**

**Converting customary units word problems **

**Converting metric units word problems**

**Word problems on simple interest**

**Word problems on compound interest**

**Word problems on types of angles **

**Complementary and supplementary angles word problems**

**Trigonometry word problems**

**Markup and markdown word problems **

**Word problems on mixed fractrions**

**One step equation word problems**

**Linear inequalities word problems**

**Ratio and proportion word problems**

**Word problems on sets and venn diagrams**

**Pythagorean theorem word problems**

**Percent of a number word problems**

**Word problems on constant speed**

**Word problems on average speed **

**Word problems on sum of the angles of a triangle is 180 degree**

**OTHER TOPICS **

**Time, speed and distance shortcuts**

**Ratio and proportion shortcuts**

**Domain and range of rational functions**

**Domain and range of rational functions with holes**

**Graphing rational functions with holes**

**Converting repeating decimals in to fractions**

**Decimal representation of rational numbers**

**Finding square root using long division**

**L.C.M method to solve time and work problems**

**Translating the word problems in to algebraic expressions**

**Remainder when 2 power 256 is divided by 17**

**Remainder when 17 power 23 is divided by 16**

**Sum of all three digit numbers divisible by 6**

**Sum of all three digit numbers divisible by 7**

**Sum of all three digit numbers divisible by 8**

**Sum of all three digit numbers formed using 1, 3, 4**

**Sum of all three four digit numbers formed with non zero digits**