Exploring graphs of rational functions :
Understanding the graphs of rational functions is sometimes a difficult stuff for some student who study math in both school level and college level.
Actually, it is not a difficult one. We can understand the graphs of rational functions when we explore them in a proper way.
To explore the graphs of rational functions, let us consider the example which is given below.
In the process of exploring graphs of rational functions, first we have to know the following stuff.
To know more about the above mentioned stuff, please click the topics given above.
If you had already learned the above mentioned stuff, then you are ready to learn the stuff, "How to graph rational functions".
Now let us take an example and explore the graphs of rational functions.
Example :
Graph the rational function given below.
Solution :
Step 1 :
First, we have to find hole, if any.
To find hole of the rational function, we have to see whether there is any common factor found at both numerator and denominator.
In our problem, clearly there is no common factor found at both numerator and denominator.So, there is no hole.
Step 2 :
Now, we have to find vertical asymptote, if any.
Most of the rational function will have vertical asymptote.
To find vertical asymptote, we have to make the denominator equal to zero.
When we do so, x - 1 = 0 ====> x = 1
So, the vertical asymptote is x = 1
Step 3 :
Now we have to find horizontal asymptote, if any.
In the rational function given above, the highest exponent of the numerator and denominator are equal. So there is an horizontal asymptote.
Equation of the horizontal asymptote:
y = a/b
Here "a" and "b" are the coefficients of highest exponent terms at the numerator and denominator respectively.
In our problem, a = 2 and b = 1
So, horizontal asymptote is y = 2/1 ==> y = 2
Step 4 :
Now we have to find slant asymptote, if any.
Since there is horizontal asymptote, there is no slant asymptote.
Step 5 :
In the given rational function, now we have to plug some random values for "x" and find the corresponding values of "y".
We have already known that the vertical asymptote is x = 1.
Now, we have to take some random values for x on the left side of x=1 as well as right side of x=1. (as given in the table below)
That is, x<1 and x>1 but not x=1.
(Because, x = 1 is vertical asymptote)
For more problems and solutions on graphing rational functions, please click the links given below.
After having gone through the stuff given above, we hope that the students would have understood "Exploring graphs of rational functions".
Apart from the stuff given above, if you want to know more about "Exploring graphs of rational functions", please click here
Apart from "Exploring graphs of rational functions", if you need any other stuff in math", please use our google custom search here.
WORD PROBLEMS
HCF and LCM word problems
Word problems on simple equations
Word problems on linear equations
Word problems on quadratic equations
Area and perimeter word problems
Word problems on direct variation and inverse variation
Word problems on comparing rates
Converting customary units word problems
Converting metric units word problems
Word problems on simple interest
Word problems on compound interest
Word problems on types of angles
Complementary and supplementary angles word problems
Markup and markdown word problems
Word problems on mixed fractrions
One step equation word problems
Linear inequalities word problems
Ratio and proportion word problems
Word problems on sets and venn diagrams
Pythagorean theorem word problems
Percent of a number word problems
Word problems on constant speed
Word problems on average speed
Word problems on sum of the angles of a triangle is 180 degree
OTHER TOPICS
Time, speed and distance shortcuts
Ratio and proportion shortcuts
Domain and range of rational functions
Domain and range of rational functions with holes
Graphing rational functions with holes
Converting repeating decimals in to fractions
Decimal representation of rational numbers
Finding square root using long division
L.C.M method to solve time and work problems
Translating the word problems in to algebraic expressions
Remainder when 2 power 256 is divided by 17
Remainder when 17 power 23 is divided by 16
Sum of all three digit numbers divisible by 6
Sum of all three digit numbers divisible by 7
Sum of all three digit numbers divisible by 8
Sum of all three digit numbers formed using 1, 3, 4
Sum of all three four digit numbers formed with non zero digits