EQUATION OF TANGENT AND NORMAL TO THE CURVE AT THE GIVEN POINT

Subscribe to our ▢️ YouTube channel πŸ”΄ for the latest videos, updates, and tips.

Find the equation of the tangent and normal of the following curves

(i)  y  =  x2-4x-5, at x = -2

(ii)  y  =  x-sin x cos x, at x = Ο€/2

(iii)  y  =  2sin23x, at x = Ο€/6

(iv)  y  =  (1+sin x)/cos x, at x  =  Ο€/4

Question 1 :

y  =  x2-4x-5, at x = -2

When x  =  -2, then

y  =  (-2)2-4(-2)-5

   = 4+8-5

y  =  7

dy/dx  =  2x-4

dy/dx  =  2(-2)-4

dy/dx  =  -8

So, the required point is (-2, 7)

Equation of tangent :

(y-y1)  =  m(x-x1)

(y-7)  =  -8(x+2)

 y-7  =  -8(x+2)

 y-7  =   -8x-16

8x+y-7+16  =  0

8x+y+9  =  0

Equation of normal :

(y-y1)  =  (-1/m) (x-x1)

(y-7)  =  (1/8) (x+2)

 8(y-7)  =  1(x+2)

8y-56  =  x+2

x-8y+58  =  0

Question 2 :

y  =  x-sin x cos x, at x = Ο€/2

Solution :

y  =  x-sin x cos x when x = Ο€/2.

y =  Ο€/2-sin Ο€/2cos Ο€/2

=  Ο€/2 - (1)(0)

=  Ο€/2 

dy/dx  =  1-[sin x (- sin x)+cos x (cos x)]

=  1-[- sin2x + cos2x]

=  1-[cos2x-sin2x]

=  1-cos 2x

Slope of the tangent at x  =  Ο€/2

=  1-cos2(Ο€/2)

=  1-cos Ο€

=  2

So, the required point is (Ο€/2, Ο€/2)

Equation of tangent :

(y-y1)  =  m(x-x1)

[y-(Ο€/2)]  =  2 [x-(Ο€/2)]

[y-(Ο€/2)]  =  2x- Ο€

2x-y-Ο€+(Ο€/2)  =  0

2x-y-(Ο€/2)  =  0

Equation of normal :

(y-y1)  =  (-1/m) (x-x1)

[y-(Ο€/2)]  =  (-1/2) [x-(Ο€/2)]

2[y-(Ο€/2)]  =  -1[x-(Ο€/2)]

2y-Ο€   =  -x+(Ο€/2)

x+2y-Ο€-(Ο€/2)  =  0

x+2y-(3Ο€/2)  =  0

Question 3 :

y  =  2sin23x, at x = Ο€/6

Solution :

y  =  2sin2 3x

dy/dx  =  2(2sin3x) (cos3x) 3

=  6(2sin3x cos3x)  

=  6sin 2(3x)

=  6sin6x

Slope at x  =  Ο€/6

=  6 sin 6 (Ο€/6)

=  6sin Ο€

= 6(0)

=  0

y  =  2sin23x

=  2sin23(Ο€/6)

=  2sin2(Ο€/2)

=  2

So, the required point is (Ο€/6,2)

Equation of tangent :

(y-y1)  =  m(x-x1)

(y-2)  =  0[x-(Ο€/6)]

 y-2  =  0

Equation of normal :

(y-y1)  =  (-1/m) (x-x1)

(y-y1) = (-1/0) (x-x1)

0(y-2)  =  -1[x-(Ο€/6)]

0  =  -1[x-(Ο€/6)]

x - (Ο€/6) = 0

Question 4 :

y  =  (1+sin x)/cos x, at x  =  Ο€/4

Solution :

y  =  (1+sin x)/cos x

dy/dx  =  [cos x (cos x) - (1 + sin x) (-sin x)]/cosΒ² x

=  [cos2x+sinx+sin2x]/cos2x

=  (1+sinx)/cos2x

Slope at x  =  Ο€/4

y  =  (1+sinΟ€/4)/cos2Ο€/4

=  (1+(1/√2))/(1/√2)2

=  [(√2+1)/√2]/(1/2)

=  [(√2+1)/√2] β‹… (2/1)

=  (√2+1)√2

y  =  2+2√2

y  =  (1+sin x)/cos x

=  (1+sinΟ€/4)/cosΟ€/4

=  [1+(1/√2)]/(1/√2)

=  [(√2+1)/√2]/(√2/1)

=  (√2+1)

So, the required point is (Ο€/4, (√2+1))

Equation of tangent :

(y-y1)  =  m(x-x1)

[y-(√2+1)]  =  (2+2√2) [x-(Ο€/4)]

Equation of normal :

(y-y1)  =  (-1/m) (x-x1)

[y-(√2+1)]  =  [-1/(2+2√2)] [x-(Ο€/4)]

Subscribe to our ▢️ YouTube channel πŸ”΄ for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

Β©All rights reserved. onlinemath4all.com

Recent Articles

  1. Specifying Units of Measure

    Dec 15, 25 07:09 PM

    Specifying Units of Measure

    Read More

  2. Quantitative Reasoning Questions and Answers

    Dec 14, 25 06:42 AM

    Quantitative Reasoning Questions and Answers

    Read More

  3. Coin Tossing Probability

    Dec 13, 25 10:11 AM

    Coin Tossing Probability - Concept - Sample Space - Formula - Solved Problems

    Read More