Subscribe to our โถ๏ธ YouTube channel ๐ด for the latest videos, updates, and tips.
How to divide the two complex numbers in polar form ?
Let z1 = r1(cos ฮธ1 + i sin ฮธ1 ) and z2 = r2(cos ฮธ2 + i sin ฮธ2 ) be two complex numbers in the polar form.
We can use the formula given below to find the division of two complex numbers in the polar form.
z1/z2 = r1/r2[cos (ฮธ1 - ฮธ2) + i sin (ฮธ1 - ฮธ2)]
Find the trigonometric form of the quotient.
Example 1 :
z1 = 2(cos 30ห + i sin 30ห)
z2 = 3(cos 60ห + i sin 60ห)
Solution :
By using the z1/z2 formula, we get
z1/z2 = (2/3)[cos (30ห - 60ห) + i sin (30ห - 60ห)]
z1/z2 = (2/3)[cos (-30ห) + i sin (-30ห)]
Example 2 :
z1 = 5(cos 220ห + i sin 220ห)
z2 = 2(cos 115ห + i sin 115ห)]
Solution :
By using the z1/z2 formula, we get
z1/z2 = 5/2[cos (220ห - 115ห) + i sin (220ห - 115ห)]
z1/z2 = 5/2(cos 105ห + i sin 105ห)
Example 3 :
z1 = 6(cos 5ฯ + i sin 5ฯ)
z2 = 3(cos 2ฯ + i sin 2ฯ)
Solution :
z1/z2 = 6/3[cos (5ฯ - 2ฯ) + i sin (5ฯ - 2ฯ)]
z1/z2 = 2(cos 3ฯ + i sin 3ฯ)
Example 4 :
z1 = cos (ฯ/2) + i sin (ฯ/2)
z2 = cos (ฯ/4 + i sin (ฯ/4)
Solution :
z1/z2 = cos (ฯ/2 - ฯ/4) + i sin (ฯ/2 - ฯ/4)
Taking the least common multiple, we get
z1/z2 = cos ((2ฯ - ฯ)/4) + i sin ((2ฯ - ฯ)/4)
z1/z2 = cos (ฯ/4) + i sin (ฯ/4)
Simplify. Express answers in both polar form and in rectangular form. Match angle measurement units to the problem, where 0ยฐ < ฮธ < 360ยฐ or 0 โค ฮธ โค 2ฯ
Example 5 :
6(cos ๐/2 + ๐ sin ๐/2) โ 4(cos ๐/4 + ๐ sin ๐/4)
Solution :
= 6(cos ๐/2 + ๐ sin ๐/2) โ 4(cos ๐/4 + ๐ sin ๐/4)
= 6(4) (cos (๐/2 + ๐/4) + ๐ sin (๐/2 + ๐/4))
= 24 (cos (2๐+๐)/4 + ๐ sin (2๐+๐)/4)
Polar form :
= 24 (cos (3๐/4) + ๐ sin (3๐/4))
Rectangular form :
= 24 [cos (๐-๐/4) + ๐ sin (๐-๐/4)]
= 24 [cos (๐/4) + ๐ sin (๐/4)]
= 24 [-โ2/2 + ๐โ2/2]
= 24 [(-โ2 + ๐โ2)/2]
= 12 (-โ2 + ๐โ2)
Example 6 :
5(cos 135 + ๐ sin 135) โ 2(cos 45 + ๐ sin 45)
Solution :
= 5(cos 135 + ๐ sin 135) โ 2(cos 45 + ๐ sin 45)
= 5(2) (cos (135 + 45) + ๐ sin (135 + 45))
= 10 (cos 180 + ๐ sin 180)
Polar form :
= 10 (cos 180 + ๐ sin 180)
Rectangular form :
= 10 (-1 + ๐ (0))
= 10(-1)
= -10
Example 7 :
3(cos (3๐/4) + ๐ sin (3๐/4)) รท (1/2)(cos ๐ + ๐ sin ๐)
Solution :
= 3(cos (3๐/4) + ๐ sin (3๐/4)) รท (1/2)(cos ๐ + ๐ sin ๐)
= 3/(1/2)[(cos (3๐/4) + ๐ sin (3๐/4) รท (cos ๐ + ๐ sin ๐)]
= 6[cos ((3๐/4) - ๐) + ๐ sin ((3๐/4) - ๐)]
= 6[cos ((3๐-4๐)/4) + ๐ sin ((3๐-4๐)/4)]
= 6[cos (-๐/4) + ๐ sin (-๐/4)]
Polar form :
6[cos (๐/4) - ๐ sin (๐/4)]
Rectangular form :
= 6[cos (๐/4) - ๐ sin (๐/4)]
= 6[(โ2/2) - ๐ (โ2/2)]
= 6[(โ2 - ๐ โ2)/2]
= 3(โ2 - ๐ โ2)
Example 8 :
3(cos (๐/6) + ๐ sin (3๐/4)) รท 4(cos 2๐/3 + ๐ sin 2๐/3)
Solution :
= 3(cos (๐/6) + ๐ sin (3๐/4)) รท 4(cos 2๐/3 + ๐ sin 2๐/3)
= (3/4)(cos ((๐/6)-(2๐/3)) + ๐ sin ((๐/6)-(2๐/3)))
= (3/4)[cos ((๐/6)-(4๐/6)) + ๐ sin ((๐/6)-(4๐/6))]
= (3/4)[cos (๐-4๐)/6 + ๐ sin (๐-4๐)/6)]
= (3/4)[cos (-3๐/6) + ๐ sin (-3๐/6)]
= (3/4)[cos (-๐/2) + ๐ sin (-๐/2)]
Polar form :
= (3/4)[cos (๐/2) - ๐ sin (๐/2)]
Rectangular form :
= (3/4)[cos (๐/2) - ๐ sin (๐/2)]
= (3/4)[0 - ๐ (1)]
= (3/4)(-1)
= -3/4
Example 9 :
4(cos (9๐/4) + ๐ sin (9๐/4)) รท 2(cos 3๐/2 + ๐ sin 3๐/2)
Solution :
= 4(cos (9๐/4) + ๐ sin (9๐/4)) รท 2(cos 3๐/2 + ๐ sin 3๐/2)
= (4/2)[cos ((9๐/4)-(3๐/2)) + ๐ sin ((9๐/4)-(3๐/2))]
= 2[cos ((9๐-3๐)/4)) + ๐ sin ((9๐-3๐)/4))]
= 2[cos (6๐/4) + ๐ sin (6๐/4)]
= 2[cos (3๐/2) + ๐ sin (3๐/2)]
Polar form :
= 2[cos (3๐/2) + ๐ sin (3๐/2)]
Rectangular form :
= 2[cos (3๐/2) + ๐ sin (3๐/2)]
= 2[0 + i(-1)]
= 2(-i)
= -2i
Example 10 :
6(cos (3๐/4) + ๐ sin (3๐/4)) รท 2(cos ๐/4 + ๐ sin ๐/4)
Solution :
= 6(cos (3๐/4) + ๐ sin (3๐/4)) รท 2(cos ๐/4 + ๐ sin ๐/4)
= 6/2[cos ((3๐/4) - (๐/4)) + ๐ sin ((3๐/4) - (๐/4))]
= 3[cos (3๐ - ๐)/4 + ๐ sin (3๐ - ๐)/4]
= 3[cos (2๐/4) + ๐ sin (2๐/4)]
= 3[cos (๐/2) + ๐ sin (๐/2)]
Polar form :
= 3[cos (๐/2) + ๐ sin (๐/2)]
Rectangular form :
= 3[cos (๐/2) + ๐ sin (๐/2)]
= 3[0 + i(1)]
= 3i
Example 11 :
(1/2)(cos (๐/3) + ๐ sin (๐/3)) รท 3(cos ๐/6 + ๐ sin ๐/6)
Solution :
= (1/2)(cos (๐/3) + ๐ sin (๐/3)) รท 3(cos ๐/6 + ๐ sin ๐/6)
= ((1/2)/3)[cos ((๐/3)-(๐/6)) + ๐ sin ((๐/3)-(๐/6))]
= (1/6)[cos ((2๐-๐)/6)) + ๐ sin ((2๐-๐)/6))]
= (1/6)[cos (๐/6) + ๐ sin (๐/6)]
Polar form :
= (1/6)[cos (๐/6) + ๐ sin (๐/6)]
Rectangular form :
= (1/6)[cos (๐/6) + ๐ sin (๐/6)]
= (1/6) [โ3/2 + i(1/2)]
= (1/6)[(โ3 + i)/2]
= (โ3 + i)/12
Subscribe to our โถ๏ธ YouTube channel ๐ด for the latest videos, updates, and tips.
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
ยฉAll rights reserved. onlinemath4all.com
Nov 28, 25 09:55 AM
Nov 26, 25 09:03 AM
Nov 21, 25 09:03 AM