DIVISION OF COMPLEX NUMBERS IN POLAR FORM

Subscribe to our โ–ถ๏ธ YouTube channel ๐Ÿ”ด for the latest videos, updates, and tips.

How to divide the two complex numbers in polar form ?

Let z1  =  r1(cos ฮธ+ i sin ฮธ) and z2  =  r2(cos ฮธ2 + i sin ฮธ2 ) be two complex numbers in the polar form.

We can use the formula given below to find the division of two complex numbers in the polar form.

z1/z2  =  r1/r2[cos (ฮธ1 - ฮธ2) + i sin (ฮธ1 - ฮธ2)]

Find the trigonometric form of the quotient.

Example 1 :

z=  2(cos 30หš + i sin 30หš)

z =  3(cos 60หš + i sin 60หš)

Solution  :

By using the z1/z2 formula, we get

z1/z=  (2/3)[cos (30หš - 60หš) + i sin (30หš - 60หš)]

z1/z2  =  (2/3)[cos (-30หš) + i sin (-30หš)]

Example 2 :

z1  =  5(cos 220หš + i sin 220หš)

z =  2(cos 115หš + i sin 115หš)]

Solution  :

By using the z1/zformula, we get

z1/z2  =  5/2[cos (220หš - 115หš) + i sin (220หš - 115หš)]

z1/z2  =  5/2(cos 105หš + i sin 105หš)

Example 3 :

z1  =  6(cos 5ฯ€ + i sin 5ฯ€)

z =  3(cos 2ฯ€ + i sin 2ฯ€)

Solution  :

z1/z2  =  6/3[cos (5ฯ€ - 2ฯ€) + i sin (5ฯ€ - 2ฯ€)]

z1/z2  =  2(cos 3ฯ€ + i sin 3ฯ€)

Example 4 :

z1  =  cos (ฯ€/2) + i sin (ฯ€/2)

z =  cos (ฯ€/4 + i sin (ฯ€/4)

Solution  :

z1/z2  =  cos (ฯ€/2 - ฯ€/4) + i sin (ฯ€/2 - ฯ€/4)

Taking the least common multiple, we get

z1/z2  =  cos ((2ฯ€ - ฯ€)/4) + i sin ((2ฯ€ - ฯ€)/4) 

z1/z2  =  cos (ฯ€/4) + i sin (ฯ€/4)

Simplify. Express answers in both polar form and in rectangular form. Match angle measurement units to the problem, where 0ยฐ < ฮธ < 360ยฐ or 0 โ‰ค ฮธ โ‰ค 2ฯ€

Example 5 :

6(cos ๐œ‹/2 + ๐‘– sin ๐œ‹/2) โˆ™ 4(cos ๐œ‹/4 + ๐‘– sin ๐œ‹/4)

Solution :

= 6(cos ๐œ‹/2 + ๐‘– sin ๐œ‹/2) โˆ™ 4(cos ๐œ‹/4 + ๐‘– sin ๐œ‹/4)

= 6(4) (cos (๐œ‹/2 + ๐œ‹/4) + ๐‘– sin (๐œ‹/2 + ๐œ‹/4))

= 24 (cos (2๐œ‹+๐œ‹)/4 + ๐‘– sin (2๐œ‹+๐œ‹)/4)

Polar form :

= 24 (cos (3๐œ‹/4) + ๐‘– sin (3๐œ‹/4))

Rectangular form :

= 24 [cos (๐œ‹-๐œ‹/4) + ๐‘– sin (๐œ‹-๐œ‹/4)]

= 24 [cos (๐œ‹/4) + ๐‘– sin (๐œ‹/4)]

= 24 [-โˆš2/2 + ๐‘–โˆš2/2]

= 24 [(-โˆš2 + ๐‘–โˆš2)/2]

= 12 (-โˆš2 + ๐‘–โˆš2)

Example 6 :

5(cos 135 + ๐‘– sin 135) โˆ™ 2(cos 45 + ๐‘– sin 45)

Solution :

5(cos 135 + ๐‘– sin 135) โˆ™ 2(cos 45 + ๐‘– sin 45)

= 5(2) (cos (135 + 45) + ๐‘– sin (135 + 45))

= 10 (cos 180 + ๐‘– sin 180)

Polar form :

= 10 (cos 180 + ๐‘– sin 180)

Rectangular form :

= 10 (-1 + ๐‘– (0))

= 10(-1)

= -10

Example 7 :

3(cos (3๐œ‹/4) + ๐‘– sin (3๐œ‹/4)) รท (1/2)(cos ๐œ‹ + ๐‘– sin ๐œ‹)

Solution :

3(cos (3๐œ‹/4) + ๐‘– sin (3๐œ‹/4)) รท (1/2)(cos ๐œ‹ + ๐‘– sin ๐œ‹)

= 3/(1/2)[(cos (3๐œ‹/4) + ๐‘– sin (3๐œ‹/4) รท (cos ๐œ‹ + ๐‘– sin ๐œ‹)]

= 6[cos ((3๐œ‹/4) - ๐œ‹) + ๐‘– sin ((3๐œ‹/4) - ๐œ‹)]

= 6[cos ((3๐œ‹-4๐œ‹)/4) + ๐‘– sin ((3๐œ‹-4๐œ‹)/4)]

= 6[cos (-๐œ‹/4) + ๐‘– sin (-๐œ‹/4)]

Polar form :

6[cos (๐œ‹/4) - ๐‘– sin (๐œ‹/4)]

Rectangular form :

= 6[cos (๐œ‹/4) - ๐‘– sin (๐œ‹/4)]

= 6[(โˆš2/2) - ๐‘– (โˆš2/2)]

= 6[(โˆš2 - ๐‘– โˆš2)/2]

= 3(โˆš2 - ๐‘– โˆš2)

Example 8 :

3(cos (๐œ‹/6) + ๐‘– sin (3๐œ‹/4)) รท 4(cos 2๐œ‹/3 + ๐‘– sin 2๐œ‹/3)

Solution :

3(cos (๐œ‹/6) + ๐‘– sin (3๐œ‹/4)) รท 4(cos 2๐œ‹/3 + ๐‘– sin 2๐œ‹/3)

= (3/4)(cos ((๐œ‹/6)-(2๐œ‹/3)) + ๐‘– sin ((๐œ‹/6)-(2๐œ‹/3)))

= (3/4)[cos ((๐œ‹/6)-(4๐œ‹/6)) + ๐‘– sin ((๐œ‹/6)-(4๐œ‹/6))]

= (3/4)[cos (๐œ‹-4๐œ‹)/6 + ๐‘– sin (๐œ‹-4๐œ‹)/6)]

= (3/4)[cos (-3๐œ‹/6) + ๐‘– sin (-3๐œ‹/6)]

= (3/4)[cos (-๐œ‹/2) + ๐‘– sin (-๐œ‹/2)]

Polar form :

= (3/4)[cos (๐œ‹/2) - ๐‘– sin (๐œ‹/2)]

Rectangular form :

= (3/4)[cos (๐œ‹/2) - ๐‘– sin (๐œ‹/2)]

= (3/4)[0 - ๐‘– (1)]

= (3/4)(-1)

= -3/4

Example 9 :

4(cos (9๐œ‹/4) + ๐‘– sin (9๐œ‹/4)) รท 2(cos 3๐œ‹/2 + ๐‘– sin 3๐œ‹/2)

Solution :

4(cos (9๐œ‹/4) + ๐‘– sin (9๐œ‹/4)) รท 2(cos 3๐œ‹/2 + ๐‘– sin 3๐œ‹/2)

= (4/2)[cos ((9๐œ‹/4)-(3๐œ‹/2)) + ๐‘– sin ((9๐œ‹/4)-(3๐œ‹/2))]

= 2[cos ((9๐œ‹-3๐œ‹)/4)) + ๐‘– sin ((9๐œ‹-3๐œ‹)/4))]

= 2[cos (6๐œ‹/4) + ๐‘– sin (6๐œ‹/4)]

= 2[cos (3๐œ‹/2) + ๐‘– sin (3๐œ‹/2)]

Polar form :

= 2[cos (3๐œ‹/2) + ๐‘– sin (3๐œ‹/2)]

Rectangular form :

= 2[cos (3๐œ‹/2) + ๐‘– sin (3๐œ‹/2)]

= 2[0 + i(-1)]

= 2(-i)

= -2i

Example 10 :

6(cos (3๐œ‹/4) + ๐‘– sin (3๐œ‹/4)) รท 2(cos ๐œ‹/4 + ๐‘– sin ๐œ‹/4)

Solution :

= 6(cos (3๐œ‹/4) + ๐‘– sin (3๐œ‹/4)) รท 2(cos ๐œ‹/4 + ๐‘– sin ๐œ‹/4)

= 6/2[cos ((3๐œ‹/4) - (๐œ‹/4)) + ๐‘– sin ((3๐œ‹/4) - (๐œ‹/4))]

= 3[cos (3๐œ‹ - ๐œ‹)/4 + ๐‘– sin (3๐œ‹ - ๐œ‹)/4]

= 3[cos (2๐œ‹/4) + ๐‘– sin (2๐œ‹/4)]

= 3[cos (๐œ‹/2) + ๐‘– sin (๐œ‹/2)]

Polar form :

= 3[cos (๐œ‹/2) + ๐‘– sin (๐œ‹/2)]

Rectangular form :

= 3[cos (๐œ‹/2) + ๐‘– sin (๐œ‹/2)]

= 3[0 + i(1)]

= 3i

Example 11 :

(1/2)(cos (๐œ‹/3) + ๐‘– sin (๐œ‹/3)) รท 3(cos ๐œ‹/6 + ๐‘– sin ๐œ‹/6)

Solution :

(1/2)(cos (๐œ‹/3) + ๐‘– sin (๐œ‹/3)) รท 3(cos ๐œ‹/6 + ๐‘– sin ๐œ‹/6)

= ((1/2)/3)[cos ((๐œ‹/3)-(๐œ‹/6)) + ๐‘– sin ((๐œ‹/3)-(๐œ‹/6))]

= (1/6)[cos ((2๐œ‹-๐œ‹)/6)) + ๐‘– sin ((2๐œ‹-๐œ‹)/6))]

= (1/6)[cos (๐œ‹/6) + ๐‘– sin (๐œ‹/6)]

Polar form :

= (1/6)[cos (๐œ‹/6) + ๐‘– sin (๐œ‹/6)]

Rectangular form :

= (1/6)[cos (๐œ‹/6) + ๐‘– sin (๐œ‹/6)]

= (1/6) [โˆš3/2 + i(1/2)]

= (1/6)[(โˆš3 + i)/2]

= (โˆš3 + i)/12

Subscribe to our โ–ถ๏ธ YouTube channel ๐Ÿ”ด for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

ยฉAll rights reserved. onlinemath4all.com

Recent Articles

  1. 10 Hard SAT Math Questions (Part - 36)

    Nov 28, 25 09:55 AM

    digitalsatmath409.png
    10 Hard SAT Math Questions (Part - 36)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 7)

    Nov 26, 25 09:03 AM

    Digital SAT Math Problems and Solutions (Part - 7)

    Read More

  3. Hcf and Lcm Word Problems

    Nov 21, 25 09:03 AM

    Hcf and Lcm Word Problems

    Read More