DECOMPOSITION METHOD FOR INTEGRATION

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Decomposition Method :

Sometimes it is very difficult to integrate the given function directly. But it can be integrated after decomposing it into a sum or difference of number of functions whose integrals are already known.

In most of the cases the given integrand will be any one of the algebraic, trigonometric or exponential forms, and sometimes combinations of these functions.

Example 1:

Integrate (1 + x²)³ dx 

Solution :

First let us expand the given expression using the formula (a + b)3

(a + b) =  a3 + 3a2 b + 3ab2 + b3

(1+ x²)³  =  1  + 3x2 + 3x4 + x6 

=  ∫dx + 3∫x²dx + 3∫x⁴ dx + ∫ x⁶ dx

=  ∫ dx + 3 ∫(x²) dx + 3 ∫ (x⁴) dx + ∫ x⁶ dx

=  x + 3 (x³/3) + 3 x⁵/5 + x⁷/7 + c

=  x + x³ + (3/5) x5 + (1/7) x⁷+ c

Example 2:

Integrate (tan x + cot x)² dx 

Solution :

(a + b)2  =  a2 + 2ab + b2

(tan x + cot x)²  =  tan2x + cot2x + 2 tan x cot x

  =  tan2x + cot2x + 2 tan x (1/tan x)

  =  tan2x + cot2x + 2 

   =  ∫ (tan²x  + cot2x  + 2)  dx

  =  ∫ (sec²x - 1  + cosec2x - 1  + 2)  dx

  =  ∫(sec²x + cosec2x)  dx

  =  ∫sec²x dx + ∫cosec²x dx 

  =  tan x -cot x + c 

Example 3:

Integrate √(1 + sin 2x) dx 

Solution :

∫√(1 + sin 2x) dx 

1  =  sin2x + cos2

  =  ∫√(sin2x + cos2x + 2 sin x cos x) dx 

  =  ∫√(sin x + cos x)2 dx 

  =  ∫(sin x + cos x) dx 

  =  ∫sin x dx + ∫cos x dx

  =  - cos x + sin x + c

Example 4 :

Integrate the following functions with respect to x :

(√x + (1/√x))2

Solution :

∫ (√x + (1/√x))dx

Expanding this using the formula (a + b)2  =  a2 + 2ab + b2 

  =  ∫ [(√x)2 + (1/√x)+ 2√x(1/√x)] dx

  =  ∫ x dx + (1/x) dx + 2  dx

  =  (x2/2) + log x + 2 x + c

Example 5 :

Integrate the following functions with respect to x :

(2x - 5)(36 + 4x)

Solution :

(2x - 5)(36 + 4x) dx 

  =  ∫ (72x + 8x2 - 180 - 20x) dx

  =  ∫ (8x2 + 52x - 180) dx

  =  ∫ 8x2 dx + 52x dx - 180 dx

  =  (8/3)x3 + 26x2 - 180 x + c

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

onlinemath4all_official_badge1.png

Recent Articles

  1. The 15 Hardest SAT Math Questions Ever

    Feb 03, 26 10:47 AM

    digitalsatmath364.png
    The 15 Hardest SAT Math Questions Ever

    Read More

  2. 25 of the Hardest SAT Math Questions

    Feb 03, 26 10:30 AM

    digitalsatmath367.png
    25 of the Hardest SAT Math Questions

    Read More

  3. SAT Math Practice Problems with Answers

    Feb 03, 26 06:24 AM

    digitalsatmath368.png
    SAT Math Practice Problems with Answers

    Read More