ABSOLUTE VALUE OF A COMPLEX NUMBER WORKSHEET

Problem 1 :

Find the absolute value of 7 - i.

Problem 2 :

Find the absolute value of -5 - 5i.

Problem 3 :

Find the absolute value of 3 - 6i.

Problem 4 :

Find the absolute value of 10 - 2i.

Problem 5 :

Find the absolute value of -4 - 8i.

Problem 6 :

Find the absolute value of -4 + 10i.

Problem 7 :

Find the absolute value of 1 - 8i.

Problem 8 :

Find the absolute value of -4 - 3i.

Problem 9 :

Find the absolute value of -1 + 5i.

Problem 10 :

Find the absolute value of 8 - 3i.

Answers

1. Answer :

|7 - i|  =  √[72 + (-1)2]

=  √(49 + 1

=  √50

=  √(5 x 5 x 2)

=  5√2

2. Answer :

|-5 - 5i|  =  √[(-5)2 + (-5)2]

=  √(25 + 25) 

=  √50

=  √(5 x 5 x 2)

=  5√2

3. Answer :

|3 - 6i|  =  √[32 + (-6)2]

=  √(9 + 36) 

=  √45

=  √(3 x 3 x 5)

=  3√5

4. Answer :

|10 -2i|  =  √[102 + (-2)2]

=  √(100 + 4) 

=  √104

=  √(2 x 2 x 26)

=  2√26

5. Answer :

|-4 - 8i|  =  √[(-4)2 + (-8)2]

=  √(16 + 64) 

=  √80

=  √(2 x 2 x 2 x 2 x 5)

= 4√5

6. Answer :

|-4 + 10i|  =  √[(-4)2 + 102]

=  √(16 + 100)

=  √116

=  √2 x 2 x 29 = 2 √29

7. Answer :

|1 - 8i|  =  √[12 + (-8)2]

=  √(1 + 64)

=  √65

8. Answer :

|-4 - 3i|  =  √(-4)2 + (-3)2

=  √(16 + 9) 

=  √25

=  5 

9. Answer :

|-1 + 5i|  =  √[(-1)2 + 52]

=  √(1 + 25) 

=  √26

10. Answer :

|8 - 3i|  =  √[82 + (-3)2]

=  √(64 + 9) 

=  √73

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 213)

    Jul 13, 25 09:51 AM

    digitalsatmath292.png
    Digital SAT Math Problems and Solutions (Part - 213)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 212)

    Jul 13, 25 09:32 AM

    digitalsatmath290.png
    Digital SAT Math Problems and Solutions (Part - 212)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 211)

    Jul 11, 25 08:34 AM

    digitalsatmath289.png
    Digital SAT Math Problems and Solutions (Part - 211)

    Read More