USE SUBSTITUTION TO SOLVE EACH SYSTEM OF EQUATIONS

Use Substitution to Solve Each System of Equations :

In this section, you will learn how to solve a system of linear equations with two unknowns using substitution. 

Solving System of Equations by Substitution - Steps

Step 1 : 

In the given two equations, solve one of the equations either for x or y. 

Step 2 : 

Substitute the result of step 1 into other equation and solve for the second variable. 

Step 3 : 

Using the result of step 2 and step 1, solve for the first variable.  

Use Substitution to Solve Each System of Equations 

Problem 1 :

Solve the following system of equations using substitution.

-4x + y = 6  and  -5x - y = 21

Solution :

-4x + y  =  6 -----(1)

-5x - y  =  21 -----(2)

Step 1 :

Solve (1) for y. 

-4x + y  =  6

Add -4x to each side.

y  =  6 + 4x -----(3)

Step 2 : 

Substitute (6 + 4x) for y into (2). 

(2)-----> -5x - (6 + 4x)  =  21

-5x - 6 - 4x  =  21

Simplify.

-9x - 6  =  21

Add 6 to each side. 

-9x  =  27

Divide each side (-9).

x  =  -3

Step 3 :

Substitute -3 for x into (3).

(3)-----> y  =  6 + 4(-3)

y  =  6 - 12

y  =  -6

Therefore, the solution is

(x, y)  =  (-3, -6)

Problem 2 :

Solve the following system of equations using substitution.

 2x + y = 20  and  6x - 5y = 12

Solution :

2x + y  =  20 -----(1) 

6x - 5y  =  12 -----(2)

Step 1 :

Solve (1) for y. 

2x + y  =  20

Subtract 2x to each side.

y  =  20 - 2x -----(3)

Step 2 : 

Substitute (20 - 2x) for y into (2). 

(2)-----> 6x - 5(20 - 2x)  =  12

6x - 100 + 10x  =  12

Simplify.

16x - 100  =  12

Add 100 to each side. 

16x  =  112

Divide each side 16.

x  =  7

Step 3 :

Substitute 7 for x into (3).

(3)-----> y  =  20 - 2(7)

y  =  20 - 14

y  =  6

Therefore, the solution is

(x, y)  =  (7, 6)

Problem 3 :

Solve the following system of equations using substitution.

y = -2 and 4x - 3y = 18 

Solution :

y  =  -2 -----(1) 

4x - 3y  =  18  -----(2)

From (1), substitute -2 for y into (2).

4x - 3(-2)  =  18

4x + 6  =  18

Subtract by 6 from each side.

4x  =  12

Divide each side by 4.

x  =  3

Therefore, the solution is

(x, y)  =  (3, -2).

Problem 4 : 

Solve the following system of equations using substitution.

2x + 3y = 5  and  3x + 4y = 7

Solution : 

2x + 3y  =  5 -----(1)

3x + 4y  =  7 -----(2)

Step 1 :

Multiply (1) by 3.

(1) ⋅ 3 -----> 6x + 9y  =  15

Solve for 6x.

6x  =  15 - 9y -----(3)

Step 2 :

Multiply (2) by 2. 

(2) ⋅ 2 -----> 6x + 8y  =  14

From (3), substitute (15 - 9y) for 6x. 

(15 - 9y) + 8y  =  14

Simplify.

15 - 9y + 8y  =  14

15 - y  =  14

Subtract 15 from each side. 

-y  =  -1

Multiply each side by (-1).

y  =  1

Step 3 : 

Substitute 1 for y into (3). 

(3)-----> 6x  =  15 - 9(1)

6x  =  15 - 9

6x  =  6

Divide each side by 6. 

x  =  1

Therefore, the solution is 

(x, y)  =  (1, 1)

After having gone through the stuff given above, we hope that the students would have understood, how to solve system of linear equations by substitution method.

Apart from the stuff given in this section, if you need any other stuff in math, please use our google custom search here.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Angular Speed and Linear Speed

    Dec 07, 22 05:15 AM

    Angular Speed and Linear Speed - Concepts - Formulas - Examples

    Read More

  2. Linear Speed Formula

    Dec 07, 22 05:13 AM

    Linear Speed Formula and Examples

    Read More

  3. Angular Speed and Linear Speed Worksheet

    Dec 07, 22 05:08 AM

    Angular Speed and Linear Speed Worksheet

    Read More