NUMBER OF SOLUTIONS OF LINEAR SYSTEM

The graph of the system is a pair of lines that intersect in one point.

The graph of the system is a pair of lines that intersect in one point.

The graph of the system is a pair of parallel lines so that there is no point of intersection.

Without solving the equations completely, we can find how many solutions they will have.

The general form of a pair of linear equations is

a1x + b1y + c1  =  0

a2x + b2y + c2  =  0

(where a1, a2, b1, b2, c1, and c2 are real numbers)

If a pair of linear equations is given by 

a1x + b1y + c1  =  0

a2x + b2y + c2  =  0

We have to check the condition then follow solutions.

Example 1 :

2x – y  =  -5

x + 2y  =  0

Solution :

By writing the given equations a1x + b1y + c1  =  0 and a2x + b2y + c2  =  0 in the form, we get

2x – y + 5  =  0

x + 2y + 0  =  0

From the equations, let us find the values of a1, a2, b1, b2, c1, and c2

Here a1  =  2, b1  =  -1 and c1  =  5

a2  =  1, b2  =  2 and c2  =  0

a1/a2  =  2/1 -----(1)

b1/b2  =  -1/2 -----(2)

c1/c2  =  5/0 -----(3)

 (1) ≠ (2)

Now, a1/a2 ≠ b1/b2

So, it has unique solution.

Example 2 :

-2x + 3y  =  12

2x - 3y  =  6

Solution :

-2x + 3y – 12  =  0

2x - 3y – 6  =  0

From the equations, let us find the values of a1, a2, b1, b2, c1, and c2

Here a1  =  -2, b1  =  3 and c1  =  -12

a2  =  2, b2  =  -3 and c2  =  -6

a1/a2  =  -2/2  =  -1 -----(1)

b1/b2  =  -3/3  =  -1 -----(2)

c1/c2  =  12/6  =  2 -----(3)

 (1) = (2) ≠ (3)

Now, a1/a2  =  b1/b2 ≠ c1/c2

So, it has no solution.

Example 3 :

2x - y  =  5

-4x + 2y  =  -10

Solution :

2x - y – 5  =  0

-4x + 2y + 10  =  0

Here a1  =  2, b1  =  -1 and c1  =  -5

a2  =  -4, b2  =  2 and c2  =  10

a1/a2  =  -2/4  =  -1/2 -----(1)

b1/b2  =  -1/2 -----(2)

c1/c2  =  -5/10  =  -1/2 -----(3)

 (1)  =  (2)  =  (3)

Now, a1/a2  =  b1/b2  =  c1/c2

So, the given equations are infinitely many solutions.

Example 4 :

x + 5y  =  -12

x - 5y  =  8

Solution :

By writing the given equations a1x + b1y + c1  =  0 and a2x + b2y + c2  =  0 in the form, we get

x + 5y + 12  =  0

x - 5y - 8  =  0

Here a1  =  1, b1  =  5 and c1  =  12

a2  =  1, b2  =  -5 and c2  =  -8

a1/a2  =  1/1  =  1 -----(1)

b1/b2  =  -5/5  =  -1 -----(2)

c1/c2  =  -12/8  =  -3/4 -----(3)

 (1) ≠ (2)

Now, a1/a2 ≠ b1/b2 

So, it has unique solution.

Example 5 :

-x + 5y  =  8

2x - 10y  =  7

Solution :

-x + 5y - 8  =  0

2x - 10y - 7  =  0

Here a1  =  -1, b1  =  5 and c1  =  -8

a2  =  2, b2  =  -10 and c2  =  -7

a1/a2  =  -1/2 -----(1)

b1/b2  =  -5/10  =  -1/2 -----(2)

c1/c2  =  8/7 -----(3)

 (1) = (2) ≠ (3)

Now, a1/a2  =  b1/b2 ≠ c1/c2

So, it has no solution.

Example 6 :

4x - 7y  =  27

-6x - 9y  =  -21

Solution :

4x - 7y - 27  =  0

-6x - 9y + 21  =  0

Here a1  =  4, b1  =  -7 and c1  =  -27

a2  =  -6, b2  =  -9 and c2  =  21

a1/a2  =  -4/6  =  -2/3 -----(1)

b1/b2  =  -7/9 -----(2)

c1/c2  =  -27/21  =  -9/7 -----(3)

 (1) ≠ (2)

Now, a1/a2 ≠ b1/b2 

So, it has unique solution.

Example 7 :

For the linear system 2x + 3y = 12 and 4x + 6y = C, what value(s) of C will give the system

a) an infinite number of solutions?

b) no solution?

Solution :

2x + 3y = 12 and 4x + 6y = C

a1/a2 = 2/4

b1/b2 = 3/6

c1/c2 = 12/C

a) Infinite number of solution :

a1/a2 b1/b2c1/c2

2/4 = 3/6 = 12/C

1/2 = 12/C

C = 12(2)

C = 24

So, the value of C is 24.

b) No solution :

a1/a2 b1/b2  c1/c2

3/6  12/C

1/2 ≠ 12/C

C ≠ 24

So, the value of C is other than 24.

Example 8 :

Suppose you are given only the following pieces of information about a system of linear equations. Would you be able to predict the number of solutions to the system? Explain.

a) The slopes of the lines are the same.

b) The y-intercepts of the lines are the same.

c) The x-intercepts are the same, and the y-intercepts are the same.

Solution :

a) The slopes of the lines are the same.

If the slopes are equal, then it must be parallel line. Then there must be no solution.

b) The y-intercepts of the lines are the same.

Since the y-intercepts are the same, they may have same slopes or different slopes.

  • If slopes and y-intercepts are equal, then it may have infinite number of solutions.
  • If slopes are not same then it may have unique solution. The solution is at y-intercept.

c) The x-intercepts are the same, and the y-intercepts are the same.

Since x-intercepts and y-intercepts are the same, then it must be the same line. So, it will have infinite number of solution.

Note :

To find the point of intersections particularly, we can use the following methods.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 213)

    Jul 13, 25 09:51 AM

    digitalsatmath292.png
    Digital SAT Math Problems and Solutions (Part - 213)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 212)

    Jul 13, 25 09:32 AM

    digitalsatmath290.png
    Digital SAT Math Problems and Solutions (Part - 212)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 211)

    Jul 11, 25 08:34 AM

    digitalsatmath289.png
    Digital SAT Math Problems and Solutions (Part - 211)

    Read More